Skip to main content
Log in

Influence of the substrate type on the microstructural, optical and electrical properties of sol–gel ITO films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Indium tin oxide (ITO) is recognized as the best transparent and conductive material [transparent conducting oxide (TCO)] until now and its properties are dependent on the preparation method. In the present work ITO films with In:Sn atomic ratio 9:1 were prepared by a sol–gel route on different substrates (microscope glass slides, microscope glass covered with one layer of SiO2 and Si wafers) for TCO applications. The multilayer ITO films were obtained by successive deposition by the dip-coating method and the films were characterized from the structural, morphological, optical, and electrical points of view using X-ray diffraction, scanning electron microscopy, atomic force microscopy, spectroscopic ellipsometry and by Hall effect measurements, respectively. The results showed that the thickness, optical constants and carrier numbers depend strongly on the type of substrate, number of deposited layers and sol concentration. The optical properties of ITO films are closely related to their electrical properties. The enhancement of the conductivity was possible with the increase of crystallite size (which occurred after thermal treatment) and with the reduction of surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lunt RR, Bulovic V (2011) Appl Phys Lett 98:113305

    Article  Google Scholar 

  2. Tien WC, Chu AK (2014) Sol Energ Mater Sol C 120:18–22

    Article  Google Scholar 

  3. Furukawa K, Terasaka Y, Ueda H, Matsumura M (1997) Synth Met 91(1–3):99–101

    Article  Google Scholar 

  4. Li Z-H, Cho E-S, Kwon SJ (2010) Appl Surf Sci 257(3):776–780

    Article  Google Scholar 

  5. Celik E, Aybarc U, Ebeoglugil MF, Birlik I, Culha O (2009) J Sol–Gel Sci Technol 50:337–347

    Article  Google Scholar 

  6. Sierros KA, Morris NJ, Kukureka SN, Cairns DR (2009) Wear 267(1–4):625–631

    Article  Google Scholar 

  7. Ahn MH, Cho E-S, Kwon SJ (2011) Appl Surf Sci 258:1242–1248

    Article  Google Scholar 

  8. Houng B, Lin SL, Chen SW, Wang A (2011) Ceram Int 37:3397–3403

    Article  Google Scholar 

  9. Lee CJ, Lin HK, Li CH, Chen LX, Lee CC, Wu CW, Huang JC (2012) Thin Solid Films 522:330–335

    Article  Google Scholar 

  10. Manavizadeh N, Boroumand FA, Asl-Soleimani E, Raissi F, Bagherzadeh S, Khodayari A, Rasouli MA (2009) Thin Solid Films 517:2324–2327

    Article  Google Scholar 

  11. Song S, Yang T, Liu J, Xin Y, Li Y, Han S (2011) Appl Surf Sci 257:7061–7064

    Article  Google Scholar 

  12. Stroescu H, Anastasescu M, Preda S, Nicolescu M, Stoica M, Stefan N, Kampylafka V, Aperathitis E, Modreanu M, Zaharescu M, Gartner M (2013) Thin Solid Films 541:121–126

    Article  Google Scholar 

  13. Wasa K, Hayakawa S (1991) Handbook of sputter deposition technology. Noyes Publications, NJ

    Google Scholar 

  14. Facchetti A, Marks TJ (2010) Transparent electronics: from synthesis to applications. Wiley, New York

    Book  Google Scholar 

  15. Ginley DS, Hosono H, Paine DC (2010) Handbook of transparent conductors. Springer, New York

    Google Scholar 

  16. Rozati SM, Ganj T (2004) Renew Energy 29(10):1671–1676

    Article  Google Scholar 

  17. El Rhaleb H, Benamar E, Rami M, Roger JP, Hakam A, Ennaoui A (2002) Appl Surf Sci 201(1–4):138–145

    Article  Google Scholar 

  18. Bisht H, Eun H-T, Mehrtens A, Aegerter MA (1999) Thin Solid Films 351:109–114

    Article  Google Scholar 

  19. Madhi I, Saadoun M, Bessais B (2012) Procedia Eng 47:192–195

    Article  Google Scholar 

  20. Mbarek H, Saadoun M, Bessais B (2006) Mater Sci Eng C 26(2–3):500–504

    Article  Google Scholar 

  21. Meng L-J, Gao J, Silva RA, Song S (2008) Thin Solid Films 516:5454–5459

    Article  Google Scholar 

  22. Zhinong Y, Yuqiong L, Fan X, Zhiwei Z, Wei X (2009) Thin Solid Films 517:5395–5398

    Article  Google Scholar 

  23. Okuya M, Ito N, Shiozaki K (2007) Thin Solid Films 515:8656–8659

    Article  Google Scholar 

  24. Fallah HR, Varnamkhasti MG, Vahid MJ (2010) Renew Energy 35:1527–1530

    Article  Google Scholar 

  25. Senthilkumar V, Vickraman P, Jayachandran M, Sanjeeviraja C (2010) Vacuum 84:864–869

    Article  Google Scholar 

  26. Stoica TF, Stoica TA, Vanca V, Lakatos E, Zaharescu M (1999) Thin Solid Films 348:273–278

    Article  Google Scholar 

  27. Stoica TF, Stoica TA, Zaharescu M, Popescu M, Sava F, Popescu-Pogrion N, Frunză L (2000) J Optoelectron Adv Mater 2:684–688

    Google Scholar 

  28. Alam MJ, Cameron DC (2000) Thin Solid Films 377:455–459

    Article  Google Scholar 

  29. Stoica TF, Gartner M, Losurdo M, Teodorescu VS, Blanchin M, Stoica T, Zaharescu M (2004) Thin Solid Films 455–456:509–512

    Article  Google Scholar 

  30. Biswas PK, De A, Dua LK, Chkoda L (2006) Appl Surf Sci 253:1953–1959

    Article  Google Scholar 

  31. Beaurain A, Luxembourg D, Dufour C, Koncar V, Capoen B, Bouazaoui M (2008) Thin Solid Films 516:4102–4106

    Article  Google Scholar 

  32. Valencia HY, Moreno LC, Ardila AM (2008) Microelectron J 39:1356–1357

    Article  Google Scholar 

  33. Prodi-Schwab A, Luthe Th, Jahn R, Herbig B, Lobmann P (2008) J Sol–Gel Sci Technol 47:68–73

    Article  Google Scholar 

  34. Soliemana A, Zayeda MK, Alamria SN, Al-Dahoudib N, Aegerter MA (2012) Mater Chem Phys 134:127–132

    Article  Google Scholar 

  35. Liu J, Wu D, Zhang N, Wang Y (2010) Rare Met 29(2):143–148

    Article  Google Scholar 

  36. Kittel C (1996) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  37. Van Meerssche M, Feneau-Dupont J (1984) Introduction à la cristallographie et à la chimie structurale. Editions Peeters, Leuven

    Google Scholar 

  38. Su C, Sheu TK, Chang YT, Wan MA, Feng MC, Hung WC (2005) Synth Met 153:9–12

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Romanian PN-II-ID-PCE-2011-3-0446 Project and by EU (ERDF) and Romanian Government that allowed for acquisition of the research infrastructure under POS-CCE O 2.2.1 Project INFRANANOCHEM—Nr. 19/01.03.2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anastasescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Predoana, L., Preda, S., Nicolescu, M. et al. Influence of the substrate type on the microstructural, optical and electrical properties of sol–gel ITO films. J Sol-Gel Sci Technol 71, 303–312 (2014). https://doi.org/10.1007/s10971-014-3373-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3373-x

Keywords

Navigation