Skip to main content
Log in

Thermoplasticity of sol–gel-derived titanoxanes chemically modified with benzoylacetone

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Titanium tetra-n-butoxide was hydrolyzed in the presence of benzoylacetone (BzAc), and the solution obtained was concentrated and served for spin-coating or dropping on substrates, followed by successive drying at 120, 200 and 250 °C. The dried products were transparent and amorphous, and the infrared absorption and Raman spectroscopic studies showed that BzAc forms chelate rings. Thermomechanical analysis showed that the 120 and 200 °C-dried products showed steep, thermoplastic shrinkage at around 30 and 70–85 °C, respectively, whereas the 250 °C-dried product did not show thermoplasticity. Thus as the drying temperature was increased, the thermoplasticity appeared at a higher temperature and finally disappeared. These changes in thermoplasticity with drying temperature were concluded to result from the progress of condensation between titanoxane polymers and/or clusters, which was evidenced in gel permeation chromatographic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kim JS, Yang SC, Bae BS (2010) Chem Mater 22:3549–3555

    Article  Google Scholar 

  2. Lewis RH, Wind RA, Maciel GE (1993) J Mater Res 8:649–654

    Article  Google Scholar 

  3. Hasegawa Y, Iimura M, Yajima S (1980) J Mater Sci 15:720–728

    Article  Google Scholar 

  4. Rozes L, Sanchez C (2011) Chem Soc Rev 40:1006–1030

    Article  Google Scholar 

  5. Sanchez C, de Soler-Illia GJAA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Chem Mater 13:3064–3083

    Article  Google Scholar 

  6. Gouzerh P, Proust A (1998) Chem Rev 98:77–111

    Article  Google Scholar 

  7. Oda S, Uchiyama H, Kozuka H (2012) Chem Lett 41:319–321

    Article  Google Scholar 

  8. Oda S, Uchiyama H, Kozuka H (2012) J Sol-Gel Sci Technol 61:484–493

    Article  Google Scholar 

  9. Kusabe M, Kozuka H, Abe S, Suzuki H (2007) J Sol-Gel Sci Technol 44:111–118

    Article  Google Scholar 

  10. Nagpal VJ, Davis RM (1995) J Mater Res 10:3068–3078

    Article  Google Scholar 

  11. Liou GS, Lin PH, Yu YY, Chen WC (2010) J Polym Sci A Polym Chem 48:1433–1440

    Article  Google Scholar 

  12. Liou GS, Lin PH, Yen HJ, Yu YY, Tsai TW, Chen WC (2010) J Mater Chem 20:531–536

    Article  Google Scholar 

  13. Xiong M, Zhou S, You B, Wu L (2004) J Polym Sci B Polym Phys 43:637–649

    Article  Google Scholar 

  14. Bobowska I, Wojciechowski P, Halamus T (2008) Polym Adv Technol 19:1860–1867

    Article  Google Scholar 

  15. Wang F, Luo Z, Qing S, Qiu Q, Li R (2009) J Alloy Comput 486:521–526

    Article  Google Scholar 

  16. Ochi M, Nii D, Suzuki Y, Harada M (2010) J Mater Sci 45:2655–2661

    Article  Google Scholar 

  17. Sorek Y, Zevin M, Reisfeld R, Hurvits T, Ruschin S (1997) Chem Mater 9:670–676

    Article  Google Scholar 

  18. Nakayama N, Hayashi T (2008) Prog Org Coat 62:274–284

    Article  Google Scholar 

  19. Nakayama N, Hayashi T (2007) Comp A 38:1996–2004

    Article  Google Scholar 

  20. Iwasaki M, Kashimura K, Masaki H, Ito S (2003) J Sol-Gel Sci Technol 26:389–392

    Article  Google Scholar 

  21. Mont FW, Kim JK, Schubert MF, Schubert EF, Siegel RW (2008) J Appl Phys 103:083120

    Article  Google Scholar 

  22. Chau JLH, Lin YM, Li AK, Su WF, Chang KS, Hsu SLC, Li TL (2007) Mater Lett 61:2908–2910

    Article  Google Scholar 

  23. Nakayama N, Hayashi T (2007) J Appl Polym Sci 105:3662–3672

    Article  Google Scholar 

  24. Demir MM, Koynov K, Akbey Ü, Bubeck C, Park I, Lieberwirth I, Wegner G (2007) Macromolecules 40:1089–1100

    Article  Google Scholar 

  25. He Y, Wang JA, Pei CL, Song JZ, Zhu D, Chen J (2010) J Nanopart Res 12:3019–3024

    Article  Google Scholar 

  26. Pál E, Sebők D, Hornok V, Dékány I (2009) J Colloid Interface Sci 332:173–182

    Article  Google Scholar 

  27. Gaur MS, Singh PK, Chauhan RS (2010) J Appl Polym Sci 118:2833–2840

    Article  Google Scholar 

  28. Saifullah MSM, Subramanian KRV, Tapley E, Kang DJ, Welland ME, Butler M (2003) Nano Lett 3:1587–1591

    Article  Google Scholar 

  29. Nakata K, Udagawa K, Ochiai T, Sakai H, Murakami T, Abe M, Fujishima A (2011) Mater Chem Phys 126:484–487

    Article  Google Scholar 

  30. Kim HR, Park OH, Choi YK, Bae BS (2000) J Sol-Gel Sci Technol 19:607–610

    Article  Google Scholar 

  31. Madarász J, Brăileanu A, Crişan M, Pokol G (2009) J Anal Appl Pyrolysis 85:549–556

    Article  Google Scholar 

  32. Tayyari SF, Emampour JS, Vakili M, Nekoei AR, Eshghi H, Salemi S, Hassanpour M (2006) J Mol Struct 794:204–214

    Article  Google Scholar 

  33. Wilson EB (1934) Phys Rev 45:706–714

    Article  Google Scholar 

  34. Valasco MJ, Rubio F, Rubio J, Oteo JL (1999) Thermochim Acta 326:91–97

    Article  Google Scholar 

  35. Sokolnicki J, Legendziewicz J, Amirkhanov W, Ovcshinnikov V, Macalik L, Hanuza J (1999) Spectrochim Acta A 55:349–367

    Article  Google Scholar 

  36. Temple PA, Hathaway CE (1973) Phys Rev B 7:3685–3697

    Article  Google Scholar 

  37. Ribot F, Toledano P, Sanchez C (1991) Chem Mater 3:759–764

    Article  Google Scholar 

  38. Schubert U (2005) J Mater Chem 15:3701–3715

    Article  Google Scholar 

  39. Kowada Y, Noma N (2009) J Sol-Gel Sci Technol 52:166–169

    Article  Google Scholar 

  40. Tayyari SF, Milani-nejad F (2000) Spectrochim Acta A 56:2679–2691

    Article  Google Scholar 

  41. Tayyari SF, Bakhshi T, Mahdizadeh SJ, Mehrani S, Sammelson RE (2009) J Mol Struct 938:76–81

    Article  Google Scholar 

  42. Tayyari SF, Raissi H, Ahmadabadi Z (2002) Spectrochim Acta A 58:2669–2682

    Article  Google Scholar 

  43. Tayyari SF, Bakhshi T, Ebrahimi M, Sammelson RE (2009) Spectrochim Acta A 73:342–347

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Naoyuki Kitamura and Dr. Kohei Fukumi, the National Institute of Advanced Industrial Science and Technology (AIST), for their help on the Raman spectra measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromitsu Kozuka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oda, S., Uchiyama, H. & Kozuka, H. Thermoplasticity of sol–gel-derived titanoxanes chemically modified with benzoylacetone. J Sol-Gel Sci Technol 70, 441–450 (2014). https://doi.org/10.1007/s10971-014-3304-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3304-x

Keywords

Navigation