Skip to main content
Log in

Ytterbium and erbium derivatives of 2-methoxyethanol and their use in the thin film deposition of Er-doped Yb3Al5O12

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We have proved different methods for yttrium and erbium 2-methoxyethoxides preparation. Our aim was to prepare a solution applicable at the subsequent sol–gel preparation of Yb3Al5O12 garnet thin films. We tested the direct reaction of a metal with 2-methoxyethanol in the presence of HgCl2, the electrolytic dissolution of metals, an alcohol interchange using isopropoxides and, finally, the exchange reaction of acetates with 2-methoxyethanol. Because our demand was to prepare a solution without the necessity of purification, we omitted chlorides as a source of cations. The formation of the metal alkoxides was examined by IR spectroscopy in each case. Both exchange reactions were fully successful; only in the case of acetate use, the arising acetic acid forms ester immediately. The direct reaction of metals with the alcohol did not achieve a full yield; on the other hand, after electrolysis application, the metals dissolved readily. However, in both cases, the filtration of either unreacted metal (direct reaction) or eroded metal pieces (electrolysis) was necessary. Because the filtration has to be processed under inert atmosphere these methods are less convenient for the subsequent use in the sol–gel deposition. Er:Yb3Al5O12 thin films deposited on silicon substrates were also prepared using the two appropriate intermediates—the solutions prepared either from acetates or isopropoxides. Both layers were monophase; however, the microstructure and luminescent properties were influenced by the solution used. The Er:YbAG layers exhibited the sharp and discreet luminescence peaks of the Er3+ transition 4I13/2 → 4I15/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaminskii AA (2007) Laser crystals and ceramics: recent advances. Laser Photon Rev 1(2):93–177

    Article  Google Scholar 

  2. Arizmendi L (2004) Photonic applications of lithium niobate crystals. Physica Status Solidi A 201(2):253–283

    Article  Google Scholar 

  3. Auzel F (1966) C R Acad Sci Paris 262:1016

    Google Scholar 

  4. Sanghera J, Kim W, Villalobos G, Shaw B, Baker C, Frantz J, Sadowski B, Aggarwal I (2012) Ceramic laser materials. Materials 5(2):258–277

    Article  Google Scholar 

  5. Aldbea F, Ibrahim N, Abdullah M, Shaiboub R (2012) Structural and magnetic properties of Tbx Y3−x Fe5 O12 (0 ≤ x ≤ 0.8) thin film prepared via sol–gel method. J Solgel Sci Technol 62(3):483–489

    Article  Google Scholar 

  6. Potdevin A, Chadeyron G, Boyer D, Caillier B, Mahiou R (2005) Sol–gel based YAG: Tb3+ or Eu3+ phosphors for application in lighting sources. J Phys D Appl Phys 38(17):3251

    Article  Google Scholar 

  7. Ravichandran D, Roy R, Chakhovskoi AG, Hunt CE, White WB, Erdei S (1997) Fabrication of Y3Al5O12:Eu thin films and powders for field emission display applications. J Lumin 71(4):291–297

    Article  Google Scholar 

  8. Garskaite E, Lindgren M, Einarsrud MA, Grande T (2010) Luminescent properties of rare earth (Er, Yb) doped yttrium aluminium garnet thin films and bulk samples synthesised by an aqueous sol–gel technique. J Eur Ceram Soc 30(7):1707–1715

    Article  Google Scholar 

  9. Xu X, Zhao Z, Song P, Zhou G, Xu J, Deng P, Bourdet G, Chanteloup JC, Zou J-P, Fulop A (2005) Infrared (1.2–1.6 μm) luminescence in Cr4+:Yb3Al5O12 single crystal with 940 nm diode pumping. Spectrochim Acta Part A Mol Biomol Spectrosc 61(11–12):2444–2447

    Article  Google Scholar 

  10. Kaczkan M, Borowska M, Malinowski M, Łukasiewicz T, Kołodziejak K (2009) Up-conversion mechanisms in Er3+ doped YbAG crystals. Phys Status Solid B 246(7):1677–1685

    Article  Google Scholar 

  11. Dubnikova N, Garskaite E, Beganskiene A, Kareiva A (2011) Sol–gel synthesis and characterization of sub-microsized lanthanide (Ho, Tm, Yb, Lu) aluminium garnets. Opt Mater 33(8):1179–1184

    Article  Google Scholar 

  12. Li ZP, Dong B, He YY, Cao BS, Feng ZQ (2012) Selective enhancement of green upconversion emissions of Er3+:Yb3Al5O12 nanocrystals by high excited state energy transfer with Yb3+–Mn2+ dimer sensitizing. J Lumin 132(7):1646–1648

    Article  Google Scholar 

  13. Xu C, Yang Q, Ren G, Liu Y (2010) Pure red upconversion emission from Yb3Al5O12 phase doped with high Er3+ concentration. J Alloy Compd 503(1):82–85

    Article  Google Scholar 

  14. Wang HM, Simmonds MC, Rodenburg JM (2003) Manufacturing of YbAG coatings and crystallisation of the pure and Li2O-doped Yb2O3-A1(2)O(3) system by a modified sol–gel method. Mater Chem Phys 77(3):802–807

    Article  Google Scholar 

  15. Bhuiyan MS et al (2006) Solution-derived textured oxide thin films: a review. Supercond Sci Technol 19(2):R1

    Article  Google Scholar 

  16. Alipour A, Jazayeri H, Amini MM (2000) Aluminum 2-methoxyethoxide: an internally coordinated aluminum alkoxede. J Coord Chem 51(2):319–322

    Article  Google Scholar 

  17. Poncelet O, Hubert-Pfalzgraf LG, Daran J-C, Astier R (1989) Alkoxides with polydentate alcohols: synthesis and structure of [Y(OC2H4OMe)3]10, a hydrocarbon soluble cyclic decamer. J Chem Soc Chem Commun 23:1846–1848

    Article  Google Scholar 

  18. Wu YC, Parola S, Marty O, Villanueva-Ibanez M, Mugnier J (2005) Structural characterizations and waveguiding properties of YAG thin films obtained by different sol–gel processes. Opt Mater 27(9):1471–1479

    Article  Google Scholar 

  19. Brown LM, Mazdiyas KS (1970) Synthesis and some properties of yttrium and lanthanide isopropoxides. Inorg Chem 9(12):2783–2786

    Article  Google Scholar 

  20. Mehrotra RC, Batwara JM (1970) Preparation and some reactions of alkoxides of gadolinium and erbium. Inorg Chem 9(11):2505–2510

    Article  Google Scholar 

  21. Shreider VA, Turevskaya EP, Koslova NI, Turova NY (1981) Direct electrochemical synthesis of metal alkoxides. Inorganica Chimica Acta Lett 53(2):L73–L76

    Article  Google Scholar 

  22. Koslova NI, Turova NY, Turevskaya EP (1982) Scandium, yttrium and lanthanum isopropoxides. Polymerism of alkoxides. Sov J Coord Chem 8:339

    Google Scholar 

  23. Mazdiyasny KS, Lynch CT, Smith JS (1965) Preparation of ultra-high-purity submicron refractory oxides. J Am Ceram Soc 48(7):372–375

    Article  Google Scholar 

  24. Tripathi UD, Batwara JM, Mehrotra RC (1967) Alcoholates and alkoxides of ytterbium. J Chem Soc A: Inorg Phys Theor 991–992. doi:10.1039/J19670000991

  25. Westin LG, Kritikos M, Caneschi A (2003) Self assembly, structure and properties of the decanuclear lanthanide ring complex, Dy-10(OC2H4OCH3)(30). Chem Commun 8:1012–1013

    Article  Google Scholar 

  26. Daniele S, Hubert-Pfalzgraf LG, Daran J-C (1996) Building of lanthanide oxoalkoxides: synthesis and molecular structure of [Gd6(μ4-O)(μ3, η2-OR)4(R, η2-OR)6(μν2-OR)2(OR)4] (R = C2H4OMe). Polyhedron 15(7):1063–1070

    Article  Google Scholar 

  27. Hubert-Pfalzgraf LG, Daniele S, Bennaceur A, Daran J-C, Vaissermann J (1997) Praseodymium alkoxide chemistry: synthesis and molecular structure of [Pr4(μ4-O)2(μ3, η2-OR)2 (μ, η2-OR)4(μ, η1-OR)(OR)(OPMe3)]2 (R = C2H4OMe) and [Y4Pr(μ5-O)(μ3-OR)4(μ-OR)4(OR)5] (R = Pri). Polyhedron 16(7):1223–1234

    Article  Google Scholar 

  28. Bradley DC, Mehrotra RC, Rothwell IP, Singh A (2001) Alkoxo and aryloxo derivatives of metals. Elsevier Ltd, New York

  29. Turova NY, Turevskaya EP, Kessler VG, Yanovskaya MI (2002) The chemistry of metal alkoxides. Kluwer Academic Publishers, New York

  30. Mazdiyasny KS, Lynch CT, Smith JS (1966) Preparation and some properties of yttrium, dysprosium and ytterbium alkoxides. Inorg Chem 5(3):342–346

    Article  Google Scholar 

  31. Hussein GAM (2001) Erbium oxide from erbium acetate hydrate; formation, characterization and catalytic activity. Powder Technol 118(3):285–290

    Article  Google Scholar 

  32. Hussein GAM, Balboul BAA (1999) Ytterbium oxide from different precursors: formation and characterization: thermoanalytical studies. Powder Technol 103(2):156–164

    Article  Google Scholar 

  33. Mock WL, Zhang JZ (1990) Concerning the relative acidities of simple alcohols. Tetrahedron Lett 31(40):5687–5688

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Specific University Research (MSMT No. 20/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Rubešová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubešová, K., Hlásek, T., Jakeš, V. et al. Ytterbium and erbium derivatives of 2-methoxyethanol and their use in the thin film deposition of Er-doped Yb3Al5O12 . J Sol-Gel Sci Technol 70, 142–148 (2014). https://doi.org/10.1007/s10971-014-3283-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3283-y

Keywords

Navigation