Skip to main content
Log in

TiO2 films obtained by the sol–gel process and doped with Yb3+ and Er3+ ions

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The upconversion mechanism based on lanthanide ions has been studied in several systems and has been applied in various fields, such as sensors, biological markers, and photovoltaic cells. This work investigates the properties of the lanthanides Er3+ and Yb3+ doped into titanium oxide at different molar concentrations. The sol–gel methodology and the spin-coating technique were used to prepare the thin films. To promote the upward energy conversion mechanism, the materials were submitted to thermal treatment at 500 °C after the depositions. Before and after thermal treatment, the films presented 80% and 83% optical transparency above 350 nm, respectively. The X-ray diffractograms of all the films attested to the beginning of TiO2 crystallization, as evidenced by the characteristic peak of the titania phase (JCPDS # 23-1446). The emission spectra of the films excited at 980 nm exhibited the characteristic Er3+ emission bands in the green (525 and 555 nm) and red (660 nm) regions, which corresponded to the 4H11/2/4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions, respectively. On the basis of the emission intensity as a function of laser power, two photons were involved in the process. The Fluorescence Intensity Ratio (FIR) indicated a rise in the local temperature, which was induced by excitation light, or the laser power.

Highlights

  • The titania films present high transparence in visible and infrared regions.

  • The system can be used to coating on the solar cells.

  • High emission in red regions of the Er3+ ion can be increase to the efficiency of the solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–173.

    Article  CAS  Google Scholar 

  2. Zhou J, Liu Q, Feng W, Sun Y, Li F (2015) Upconversion luminescent materials: advances and applications. Chem Rev 115:395–465

    Article  CAS  Google Scholar 

  3. Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989

    Article  CAS  Google Scholar 

  4. Auzel F (2004) f-f oscillator strengths, hypersensitivity, branching ratios and quantum efficiencies discussed in the light of forgotten results. J Alloy Compd 380:9–14

    Article  CAS  Google Scholar 

  5. Bünzli JCG, Chauvin A-S (2014) Lanthanides in solar energy conversion. In Bünzli JCG, Pecharsky VK (eds) Handbook on the physics and chemistry of rare earths, Vol. 44, Amsterdam: The Netherlands, pp. 169–281.

  6. Grzyb T, Tyminski A (2016) Up-conversion luminescence of GdOF:Yb3+,Ln3+ (Ln = Ho, Tm, Er) nanocrystals. J Alloy Compds 660:235–243

    Article  CAS  Google Scholar 

  7. Rodríguez VD, Méndez-Ramos J, Tikhomirov VK, del-Castillo J, Yanes AC, Moshchalkov VV (2011) Understanding the up-conversion dynamics in high efficiency Yb3+–Tm3+ systems for solar cells. Opt Mater 34:179–182

    Article  Google Scholar 

  8. da Silva HJ, Batista JP, Rocha LA, Nassar EJ (2019) Improved efficiency of silicon polycrystalline commercial photovoltaic cells coated with a co-doped Er3+/Yb3+ silica matrix. J Mater Sci: Mater Electron 30:16886–16891

    Google Scholar 

  9. Cai W, Zhang Z, Jin Y, Lv Y, Wang L, Chen K, Zhou X (2019) Application of TiO2 hollow microspheres incorporated with up-conversion NaYF4:Yb3+, Er3+ nanoparticles and commercial available carbon counter electrodes in dye-sensitized solar cells. Sol Energy 188:441–449

    Article  CAS  Google Scholar 

  10. Tianhao J, Fang Y, Haiyan D, Hong G, Jianshi Y (2010) Preparation and characterization of upconversion nanocomposite for β-NaYF4:Yb3+,Er3+-supported TiO2 nanobelts. J Rare Earths 28:529–533

    Article  Google Scholar 

  11. Hafez H, Saif M, Abdel-Mottale MSA (2011) Down-converting lanthanide doped TiO2 photoelectrodes for efficiency enhancement of dye-sensitized solar cells. J Power Sources 196:5792–5796

    Article  CAS  Google Scholar 

  12. Yao N, Huang J, Fu K, Liu S, Wang Y, Xu X, Zhu M, Cao B (2014) Efficiency enhancement in dye-sensitized solar cells with down conversion material ZnO: Eu3+, Dy3+. J Power Sources 267:405–410

    Article  CAS  Google Scholar 

  13. Luitel HN, Ikeue K, Okuda R, Chand R, Torikai T, Yada M, Watari T (2014) Bright orange upconversion in a ZnO–TiO2 composite containing Er3+ and Yb3+. Opt Mater 36:591–595

    Article  CAS  Google Scholar 

  14. Kobwittaya K, Oishi Y, Torikai T, Yada M, Watari T, Luitel HN (2017) Bright red upconversion luminescence from Er3+ and Yb3+ co-doped ZnOTiO2 composite phosphor powder. Ceram Int 43:13505–13515

    Article  CAS  Google Scholar 

  15. Leal JJ, Narro-García R, Flores-De los Ríos JP, Gutierrez-Mendez N, Ramos-Sánchez VH, González-Castillo JR, Rodríguez E (2019) Effect of TiO2 on the thermal and optical properties of Er3+/Yb3+ co-doped tellurite glasses for optical sensor. J Lumin 208:342–349

    Article  CAS  Google Scholar 

  16. Liu W, Zhang H, Wang H, Zhang M, Guo M (2017) Titanium mesh supported TiO2 nanowire arrays/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles novel composites for flexible dye-sensitized solar cells. Appl Surf Sci 422:304–315

    Article  CAS  Google Scholar 

  17. Dong J, Li Y, Zheng W, Wang R, Xu Y (2019) Lower power dependent upconversion multicolor tunable properties in TiO2:Yb3+/Er3+/ (Tm3+). Ceram Int 45:432–438

    Article  CAS  Google Scholar 

  18. Maheshwari A, Rai SB, Parkash O, Kumar D (2011) Multi-photon luminescence in Er3+/Yb3+:SrO-TiO2 glass ceramic. Opt Mater 34:298–302

    Article  CAS  Google Scholar 

  19. Mokoena TP, Linganiso EC, Kumar V, Swart HC, Cho S-H, Ntwaeaborwa OM (2017) Up-conversion luminescence in Yb3+-Er3+/Tm3+ co-doped Al2O3-TiO2 nano-composites. J Coll Inter Sci 496:87–99

    Article  CAS  Google Scholar 

  20. Litter MI, Navfo JA (1996) Photocatalytic properties of iron-doped titania semiconductors. J Photochem Photobiol 98:171–181

    Article  CAS  Google Scholar 

  21. Tuesta EG, Gutarra A (2004) Aplicaciones electrocrómicas y fotocatalíticas del dióxido de titanio. Revciuni 8:21–45

    Google Scholar 

  22. Fisher J, Egerton TA (2001) Titanium Compounds, Inorganic. Kirk-Othmer Encyclopedia of Chemical Technology. https://doi.org/10.1002/0471238961.0914151805070518.a01.pub2

  23. Nainani RK, Thakur P (2016) Facile synthesis of TiO2-RGO composite with enhanced performance for the photocatalytic mineralization of organic pollutants. Water Sci Technol 73:1927–1936

    Article  CAS  Google Scholar 

  24. Golubović A, Veljković I, Sćepanović M, Grujić-Brojčin M, Tomić N, Mijin D, Babić B (2016) Influence of some sol-gel synthesis parameters of mesoporous TiO2 on photocatalytic degradation of pollutants. Chem Ind Chem Eng Q 22:65–73

    Article  Google Scholar 

  25. Lim J, Murugan P, Lakshminarasimhan N, Kim J, Lee JS, Lee S-H, Choi W (2014) Synergic photocatalytic effects of nitrogen and niobium co-doping in TiO2 for the redox conversion of aquatic pollutants under visible light. J Catal 310:91–99

    Article  CAS  Google Scholar 

  26. León-Ríos S, González RE, Fuentes S, Ángel EC, Echeverría A, Serrano AE, Demergasso CS, Zárate RA (2016) One-dimensional TiO2-B crystals synthesised by hydrothermal process and their antibacterial behaviour on Escherichia coli J Nanomaterials 2016:1–8

    Article  Google Scholar 

  27. Gupta K, Singh RP, Pandey A, Pandey A (2013) Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli. Beilstein. J Nanotechnol 4:345–351

    Google Scholar 

  28. Ogorevc J, Pirc ET, Matoh L, Bukovec P (2012) Antibacterial and photodegradative properties of metal doped TiO2 thin films under visible light. Acta Chim Slov, 59:264-272.

  29. Joost U, Juganson K, Visnapuu M, Mortimer M, Kahru A, Nõmmiste E, Kisand V, Ivask A (2015) Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids. J Photochem Photobio B 142:178–185

    Article  CAS  Google Scholar 

  30. Guimaraes RR, Parussulo ALA, Toma HE, Araki K (2016) Enlightening the synergic effect of anatase/rutile mixtures in solar cells. Electrochim Acta 188:523–528

    Article  CAS  Google Scholar 

  31. Das TK, Ilaiyaraja P, Mocherla PS, Bhalerao GM, Sudakar C (2016) Influence of surface disorder, oxygen defects and bandgap in TiO2 nanostructures on the photovoltaic properties of dye sensitized solar cells. Sol Energy Mater Sol Cells 144:194–209

    Article  CAS  Google Scholar 

  32. Weng KW, Huang YP (2013) Preparation of TiO2 thin films on glass surfaces with self-cleaning characteristics for solar concentrators. Surf Coat Technol 231:201–204

    Article  CAS  Google Scholar 

  33. Chaves JAM, Escada ALA, Rodrigues AD, Claro APRA (2016) Characterization of the structure, thermal stability and wettability of the TiO2 nanotubes growth on the Ti-7.5Mo alloy surface. Appl Surf Sci 370:76–82

    Article  CAS  Google Scholar 

  34. Tauc J (1970) Absorption edge and internal electric fields in amorphous semiconductores. Mater Res Bull 5:721–729

    Article  CAS  Google Scholar 

  35. Sun Z, Pichugin VF, Evdokimov KE, Konishchev ME, Syrtanov MS, Kudiiarov VN, Li K, Tverdokhlebov SI (2020) Effect of nitrogen-doping and post annealing on wettability and band gap energy of TiO2 thin film. Appl Surf Sci 500:144048–144058

    Article  CAS  Google Scholar 

  36. Ueda M, Ohtsuka T (2002) Luminescence from band-gap photo-excitation of titanium anodic oxide films. Corros Sci 44:1633–1638

    Article  CAS  Google Scholar 

  37. Mechiakh R, Sedrine NB, Karyaoui M, Chtourou R (2011) Annealing temperature effect on the properties of mercury-doped TiO2 films prepared by sol–gel dip-coating technique. Appl Surf Sci 257:5529–5534

    Article  CAS  Google Scholar 

  38. de Souza ML, Moscardini SB, de Faria EH, Ciuffi KJ, Rocha LA, Nassar EJ, Silva JVL, Oliveira MF, Maia IA (2018) Óxido de ítrio e alumínio dopado com Yb3+ e Er3+ incorporado em membrana de poliamida. Quím Nova 41:519–527.

    Google Scholar 

  39. Ferreira MF, de Andrade FHP, Granito CJ, WEdoN Melo, de Faria EH, Ciuffi KJ, Rocha LA, Nassar EJ (2020) Non-hydrolytic sol–gel route: a powerful process to develop UV-Vis-IR luminescent YVO4 phosphors. J Fluoresc 30:827–837

    Article  CAS  Google Scholar 

  40. Du P, Luo L, Huang X, Yu JS (2018) Ultrafast synthesis of bifunctional Er3+/Yb3+-codoped NaBiF4 upconverting nanoparticles for nanothermometer and optical heater. J Coll Inter Sci 514:172–181

    Article  CAS  Google Scholar 

  41. Manzani D, Petruci JFdaS, Nigoghossian K, Cardoso AA, SJL Ribeiro (2017) A portable luminescent thermometer based on green upconversion emission of Er3+/Yb3+ co-doped tellurite glass. Sci Rep. 7:41596

    Article  CAS  Google Scholar 

  42. Brites CDS, Lima PP, Silva NJO, Millan A, Amaral VS, Palacio F, Carlos LD (2012) Thermometry at the nanoscale. Nanoscale 4:4799

    Article  CAS  Google Scholar 

  43. Brites CDS, Lima PP, Silva NJO, Millán A, Amaral VS, Palacio F, Carlos LD (2010) A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale. Adv Mater 22:4499–4504

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. São Paulo Research Foundation (FAPESP, grants 2015/20298-0, L.A.R, and 2019/02641-0, E.J.N) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grants 302702/2018-0, L.A.R., and 302668/2017-9, E.J.N.) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo José Nassar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldini, D.C., de Faria, E.H., Ciuffi, K.J. et al. TiO2 films obtained by the sol–gel process and doped with Yb3+ and Er3+ ions. J Sol-Gel Sci Technol 97, 548–555 (2021). https://doi.org/10.1007/s10971-020-05465-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05465-y

Keywords

Navigation