Skip to main content
Log in

Hierarchical meso–macroporous bioglass for bone tissue engineering

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A novel meso–macroporous bioglass has been synthesized based on a sol–gel technique. This method used mushroom stalk as macroporous template and EO20PO70EO20 as the mesoporous template. The final sample has copied the macroporous structure of the plant template, precisely. Ibuprofen was used as the model drug, and the drug loading and release test indicated the loading amount of the sample could reach 33.59 wt% and the releasing amount closed 75 wt% after 48 h. The excellent biomineralization and bioactive are also confirmed in vitro tests. It takes only 4 h to induce the formation of hydroxyapatite. Notably, the biocompatibility assessment confirmed that the obtained materials presented good biocompatibility and the enhanced adherence of HeLa cells. The exquisite mesoporous structure of the sample would be propitious to storage and transport guest molecule, making the hierarchical porous materials have more distinctive performance and application on bone tissue regeneration and drug delivery, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yan XX, Huang XH, Yu CZ, Deng HX, Wang Y, Zhang ZD, Qiao SZ, Lu GQ, Zhao DY (2006) Biomaterials 27:3396

    Article  Google Scholar 

  2. Chen QZ, Efthymiou A, Salih V, Boccaccinil AR (2008) J Biomed Mater Res A 84A:1049

    Article  Google Scholar 

  3. Marelli B, Ghezzi CE, Mohn D, Stark WJ, Barralet JE, Boccaccini AR, Nazhat SN (2011) Biomaterials 32:8915

    Article  Google Scholar 

  4. Hench LL, Polak JM (2002) Science 295:1014

    Article  Google Scholar 

  5. Fundueanu G, Constantin M, Ascenzi P (2008) Biomaterials 29:2767

    Article  Google Scholar 

  6. Hafezi F, Hosseinnejad F, Fooladi AAI, Mafi SM, Amiri A, Nourani MR (2012) J Mater Sci-Mater M 23:2783

    Article  Google Scholar 

  7. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2000) Biochem Bioph Res Co 276:461

    Article  Google Scholar 

  8. Elomaa L, Kokkari A, Narhi T, Seppala JV (2013) Compos Sci Technol 74:99

    Article  Google Scholar 

  9. Lei B, Chen XF, Han X, Zhou JA (2012) J Mater Chem 22:16906

    Article  Google Scholar 

  10. Will J, Gerhardt LC, Boccaccini AR (2012) Adv Biochem Engin/Biotechnol 126:195–226

    Article  Google Scholar 

  11. Li XF, Qu FY, Li W, Lin HM, Jin YX (2012) J Sol–Gel Sci Techn 63:416

    Article  Google Scholar 

  12. Sun XH, Zheng CM, Qiao MQ, Yan JJ, Wang XP, Guan NJ (2009) Chem Commun 45:4750–4752

    Google Scholar 

  13. Zhang HN, Migneco F, Lin CY, Hollister SJ (2010) Tissue Eng Part A 16:3441

    Article  Google Scholar 

  14. Tunney MM, Gorman SP (2002) Biomaterials 23:4601

    Article  Google Scholar 

  15. Rich J, Jaakkola T, Tirri T, Narhi T, Yli-Urpo A, Seppala J (2002) Biomaterials 23:2143

    Article  Google Scholar 

  16. Yoon H, Kim G (2011) J Pharm Sci-US 100:424

    Article  Google Scholar 

  17. Wang HS, Gao XH, Wang YA, Tang JL, Sun CC, Deng XL, Niu XD (2012) Mater Lett 76:237–239

    Article  Google Scholar 

  18. Stoppato M, Stevens HY, Carletti E, Migliaresi C, Motta A, Guldberg RE (2013) Biomaterials 34:4573–4581

    Article  Google Scholar 

  19. Yue WB, Park RJ, Kulak AN, Meldrum FC (2006) J Cryst Growth 294:69–77

    Article  Google Scholar 

  20. Chen WX, Zhang H, Huang YQ, Wang WK (2010) J Mater Chem 20:4773–4775

    Article  Google Scholar 

  21. Jiang PP, Lin HM, Xing R, Jiang JJ, Qu FY (2012) J Sol–Gel Sci Techn 61:421

    Article  Google Scholar 

  22. Qu FY, Lin HM, Wu X, Li XF, Qiu SL, Zhu GS (2010) Solid State Sci 12:851

    Article  Google Scholar 

  23. Hong YL, Fan HS, Zhang XD (2009) J Phys Chem 113:5837–5842

    Article  Google Scholar 

  24. Zhang K, Yuan EH, Xu LL, Xue QS, Luo C, Albela B, Bonneviot L (2012) Eur J Inorg Chem 26:4183

    Article  Google Scholar 

  25. Wang D, Lin HM, Jiang JJ, Han X, Guo W, Wu XD, Jin YX, Qu FY (2013) Sci Technol Adv Mat 14:025004

    Article  Google Scholar 

  26. Lin HM, Ma JY, Li XF, Wu X, Qu FY (2012) J Sol–Gel Sci Technol 62:170–176

    Article  Google Scholar 

  27. Yu HD, Zhang ZY, Win KY, Chan J, Teoh SH, Han MY (2010) ChemComm 46:6578–6580

    Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by the National Natural Science Foundation of China (21171045, 21101046), Natural Science Foundation of Heilongjiang Province of China (ZD201214), Program for Scientific and Technological Innovation team Construction in Universities of Heilongjiang Province (2011TD010), Research Fund for the Doctoral Program of Higher Education of China (20102329110002), Pre-research Found for Technological Development of Harbin Normal University (12XYG-11), Foundation of Harbin Educational Committee (12511168), Innovation special fund of Harbin Science and Technology Bureau of China (KGB201014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyu Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Li, X., Lin, H. et al. Hierarchical meso–macroporous bioglass for bone tissue engineering. J Sol-Gel Sci Technol 70, 33–39 (2014). https://doi.org/10.1007/s10971-014-3270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3270-3

Keywords

Navigation