Skip to main content
Log in

Optical and electrical behavior of organic/inorganic hybrid with embedded gold nanoparticles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) with different diameters (from 4 up to 10 nm) were immobilized within a amine-alcohol-silicate matrix [AA(600)] by mixing a preformed Au nanoparticle colloidal solution with the precursors of amine-alcohol-silicate, prior to the sol–gel transition. The organic–inorganic hybrid (OIH) nanocomposites were synthetized by sol–gel method by reaction of amino-functionalized polyether and a siloxane functionalized with a terminal epoxy group. The obtained homogeneous, high transparent and stable materials exhibit enhanced optical and electrical properties derived from plasmonic effects associated with the size and form of the nanoparticle dopants which show to be preserved during the synthesis steps. Performed electrochemical impedance spectroscopy revealed that OIH gels doped with AuNPs exhibit low conductivity that shows to be slightly dependent on dispersed Au particle sizes. The characterization of this materials by current–voltage (I–V) measurements shows that these materials exhibit an electrical stability within an range of applied potential of about 5 V and suggests that charge transfer mechanism is strongly dependent on the potential applied across the OIH gel as observed by testing different charge transfer models: space-charge-limited current, Poole–Frenkel, Schottky emission and hopping conduction or the Schottky-Simmons. The results obtained from the characterization the electrochemical properties shows that the produced material to be relevant for the potential application of OIH embedded AuNPs nanocomposites in non-volatile organic memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang B, Li B, Deng Q, Dong S (1998) Anal Chem 70:3170

    Article  Google Scholar 

  2. Walcarius A (2001) Electroanalysis 13:8

    Google Scholar 

  3. Salimi A, Compton RG, Hallaj R (2004) Anal Biochem 333:49

    Article  Google Scholar 

  4. Kumar A, Pandey RR, Brantley B (2006) Talanta 69:700

    Article  Google Scholar 

  5. Pauliukaite R, Paquim AMC, Oliveira AM, Brett CMA (2006) Electrochim Acta 52:1

    Article  Google Scholar 

  6. Singh S, Singhal R, Malhotra BD (2007) Anal Chim Acta 582:335

    Article  Google Scholar 

  7. Zea Bermudez V, Poinsignon C, Armand MB (1997) J Mater Chem 7:1677

    Article  Google Scholar 

  8. Barbosa PC, Silva MM, Smith MJ, Gonçalves A, Fortunato E, Nunes SC, Zea Bermudez V (2009) Electrochimica Acta 54:1002

  9. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, Chap. 4. Springer, Berlin

  10. Lee C, Gorur-Seetharam A, Kan E (2003) IEDM Tech Dig 3:557

    Google Scholar 

  11. Barbadillo M, Caseroa E, PetitDomínguez MD, Vázquez L, Pariente F, Lorenzo E (2009) Talanta 80:797

    Article  Google Scholar 

  12. Ahmad Z, Ooi PC, Sulaiman K, Awb KC, Sayyad MH (2012) Microelectron Eng 99:62

    Article  Google Scholar 

  13. Moreira SDFC, Silva CJR, Prado LASA, Costa MFM, Boev VI, Martín-Sanchez J, Gomes MJM (2012) Polym Sci Part B Polym Phys 50:492

    Article  Google Scholar 

  14. Barbosa PC, Rodrigues LC, Silva MM, Smith MJ (2008) J Power Sources 180:607

    Article  Google Scholar 

  15. Boev VI, Soloviev A, Silva CJR, Gomes MJM, Barber DJ (2007) J Sol Gel Sci Techn 41:223

    Article  Google Scholar 

  16. Silva CJR, Smith MJ (1995) Electrochim Acta 40:2389

    Article  Google Scholar 

  17. Silva CJR (1996) PhD thesis, Universidade do Minho

  18. Ung T, Liz-Marzán LM, Mulvaney J (2001) Phys Chem B 105:3441

    Article  Google Scholar 

  19. Robertson J, Chen CW (1999) Appl Phys Lett 74:1168

    Article  Google Scholar 

  20. Sahoo SK, Misra D, Agrawal DC, Mohapatra YN, Majumder SB, Katiyar RS (2010) J Appl Phys 108:74112

    Article  Google Scholar 

  21. Vorobiev A, Rundqvist P, Khamchane K, Gevorgian S (2006) J Appl Phys 96:4642

    Article  Google Scholar 

  22. Silva JPB, Sekhar KC, Almeida A, Moreira JA, Martín-Sánchez J, Pereira M, Khodorov A, Gomes MJM (2012) J Appl Phys 112:44105

    Article  Google Scholar 

  23. Bonanni A, Pumera M, Miyahara Y (2011) Phys Chem Chem Phys 13:4980

    Article  Google Scholar 

  24. Choi CG, Bae B-S (2007) Org Electron 8:743

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially funded through the project PTDC/QUI/70063/2006 financed by Portuguese Foundation for Science and Technology (FCT). S.D. Moreira thanks FCT for the PhD grant (SFRH/BD/46618/2008). J.P.B.S. thanks FCT for the financial support (grant SFRH/BD/44861/2008). Authors also acknowledge FCT and FEDER (European Fund for Regional Development)-COMPETE-QREN-EU; CQ/UM [PEst-C/QUI/UI0686/2011 (FCOMP-01-0124-FEDER-022716)] and CF/UM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra D. F. C. Moreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreira, S.D.F.C., Silva, J.P.B., Silva, C.J.R. et al. Optical and electrical behavior of organic/inorganic hybrid with embedded gold nanoparticles. J Sol-Gel Sci Technol 69, 52–60 (2014). https://doi.org/10.1007/s10971-013-3185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3185-4

Keywords

Navigation