Skip to main content
Log in

Sol–gel synthesis of macroporous TiO2 from ionic precursors via phase separation route

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Monolithic macroporous titanium dioxide (TiO2) derived from ionic precursors has been successfully prepared via the sol–gel route accompanied by phase separation in the presence of formamide (FA) and poly(vinylpyrrolidone) (PVP). The addition of FA promotes the gelation, whereas PVP enhances the polymerization-induced phase separation. Appropriate choice of the starting compositions allows the production of cocontinuous macroporous TiO2 monoliths in large dimensions, and controls the size of macropores. The resultant dried gel is amorphous, whereas anatase and rutile phases are precipitated at 500 and 900 °C respectively, without spoiling the macroporous morphology. Nitrogen adsorption–desorption measurements revealed that the dried gels exhibits mesostructure with a median pore size of about 3 nm and BET surface area of 228 m2/g, whereas 15 nm and 73 m2/g for the gels calcined at 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shieh D-L, Lin Y-S, Yeh J-H, Chen S-C, Lin B-C, Lin J-L (2012) N-doped, porous TiO2 with rutile phase and visible light sensitive photocatalytic activity. Chem Commun 48:2528–2530

    Article  CAS  Google Scholar 

  2. Schattauer S, Reinhold B, Albrecht S, Fahrenson C, Schubert M, Janietz S, Neher D (2012) Influence of sintering on the structural and electronic properties of TiO2 nanoporous layers prepared via a non-sol–gel approach. Colloid Polym Sci 290:1843–1854

    Google Scholar 

  3. Kimura M, Sakai R, Sato S, Fukawa T, Ikehara T, Maeda R, Mihara T (2012) Sensing of vaporous organic compounds by TiO2 porous films covered with polythiophene layers. Adv Funct Mater 22:469–476

    Article  CAS  Google Scholar 

  4. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  5. Kimling MC, Caruso RA (2012) Sol–gel synthesis of hierarchically porous TiO2 beads using calcium alginate beads as sacrificial templates. J Mater Chem 22:4073–4082

    Article  CAS  Google Scholar 

  6. Jiang P, Lin H, Xing R, Jiang J, Qu F (2012) Synthesis of multifunctional macroporous–mesoporous TiO2-bioglasses for bone tissue engineering. J Sol Gel Sci Technol 61:421–428

    Article  CAS  Google Scholar 

  7. Wang X, Yu JC, Ho C, Hou Y, Fu X (2005) Photocatalytic activity of a hierarchically macro/mesoporous Titania. Langmuir 21:2552–2559

    Article  CAS  Google Scholar 

  8. Yu J, Yu JC, Leung MKP, Ho W, Cheng B, Zhao X, Zhao J (2003) Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous Titania. J Catal 217:69–78

    CAS  Google Scholar 

  9. Holland BT, Blanford CF, Stein A (1998) Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281:538–540

    Article  CAS  Google Scholar 

  10. Caruso RA, Giersig M, Willig F, Antonietti M (1998) Porous “Coral-like” TiO2 structures produced by templating polymer gels. Langmuir 14:6333–6336

    Article  CAS  Google Scholar 

  11. Imhof A, Pine DJ (1997) Ordered macroporous materials by emulsion templating. Nature 389:948–951

    Article  CAS  Google Scholar 

  12. Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4:67–112

    Article  CAS  Google Scholar 

  13. Konishi J, Fujita K, Nakanishi K, Hirao K, Morisato K, Miyazaki S, Ohira M (2009) Sol–gel synthesis of macro–mesoporous Titania monoliths and their applications to chromatographic separation media for organophosphate compounds. J Chromatogr A 1216:7375–7383

    Article  CAS  Google Scholar 

  14. Konishi J, Fujita K, Nakanishi K, Hirao K (2006) Monolithic TiO2 with controlled multiscale porosity via a template-free sol–gel process accompanied by phase separation. Chem Mater 18:6069–6074

    Article  CAS  Google Scholar 

  15. Konishi J, Fujita K, Nakanishi K, Hirao K (2004) Macroporous morphology induced by phase separation in sol–gel systems derived from Titania colloid. Mater Res Soc Symp Proc 788:391–396

    Google Scholar 

  16. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) Facile preparation of hierarchically porous TiO2 monoliths. J Am Ceram Soc 93:3110–3115

    Article  CAS  Google Scholar 

  17. Konishi J, Fujita K, Oiwa S, Nakanishi K, Hirao K (2008) Crystalline ZrO2 monoliths with well-defined macropores and mesostructured skeletons prepared by combining the alkoxy-derived sol–gel process accompanied by phase separation and the solvothermal process. Chem Mater 20:2165–2173

    Article  CAS  Google Scholar 

  18. Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K (2007) Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol–gel process accompanied by phase separation. Chem Mater 19:3393–3398

    Article  CAS  Google Scholar 

  19. Tokudome Y, Fujita K, Nakanishi K, Kanamori K, Miura K, Hirao K, Hanada T (2007) Sol–gel synthesis of macroporous YAG from ionic precursors via phase separation route. J Ceram Soc Jpn 115:925–928

    Article  CAS  Google Scholar 

  20. Kido Y, Nakanishi K, Miyasaka A, Kanamori K (2012) Synthesis of monolithic hierarchically porous iron-based xerogels from iron(III) Salts via an epoxide-mediated sol–gel process. Chem Mater 24:2071–2077

    Article  CAS  Google Scholar 

  21. Hasegawa G, Ishihara Y, Kanamori K, Miyazaki K, Yamada Y, Nakanishi K, Abe T (2011) Facile preparation of monolithic LiFePO4/carbon composites with well-defined macropores for a lithium-ion battery. Chem Mater 23:5208–5216

    Article  CAS  Google Scholar 

  22. Tokudome Y, Miyasaka A, Nakanishi K, Hanada T (2011) Synthesis of hierarchical macro/mesoporous dicalcium phosphate monolith via epoxide-mediated sol–gel reaction from ionic precursors. J Sol Gel Sci Technol 57:269–278

    Article  CAS  Google Scholar 

  23. Guo X, Li W, Nakanishi K, Kanamori K, Zhu Y, Yang H (2013) Preparation of mullite monoliths with well-defined macropores and mesostructured skeletons via the sol–gel process accompanied by phase separation. J Eur Ceram Soc 33:1967–1974

    Article  CAS  Google Scholar 

  24. Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingzhong Guo or Kazuki Nakanishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Guo, X., Zhu, Y. et al. Sol–gel synthesis of macroporous TiO2 from ionic precursors via phase separation route. J Sol-Gel Sci Technol 67, 639–645 (2013). https://doi.org/10.1007/s10971-013-3123-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3123-5

Keywords

Navigation