Skip to main content
Log in

Stability against photodegradation of a photochromic spirooxazine dye embedded in amino-functionalized sol–gel hybrid coatings

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A photochromic spirooxazine derivative, 1-propyl-3,3,5,6-tetramethyl-spiro[indoline-2-3′-[quinolino]oxazine], was successfully embedded in sol–gel thin silica films functionalized with different amino groups. The resulting films show high transparency and exhibit a strong blue coloration upon irradiation with UV light. The composition of the embedding matrix has an important effect on the photostability of the photochromic molecules upon exposure to sunlight, and can therefore be used to design coatings in which the dye molecules have improved durability. In this sense, the incorporation of different amino groups (–PrNH2, –PrNMe2 and –PhNH2) in the ormosil network, results in an enhanced stabilization of the photochromic dye, as compared with unfunctionalized matrices. In matrices modified with aminophenyl groups (–PhNH2), the photostability of the dye has been increased, reaching a factor of 8, due to the formation of hydrogen bonds between the amino groups and the OH groups of the pore surface, limiting the availability of these groups to undergo side reactions with the dye during irradiation that lead to its degradation. Increasing the photostability of the photochromic dye is an important issue for the long term usage of photochromic materials in outdoors applications, limited, nowadays, by their low durability when exposed to sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Dürr, H. Bouas-Laurent (2003) Rev. Ed. J-M Lehn, Photochromism; Molecules and Systems, Elsevier, Amsterdam

  2. Sun XD, Wang XJ, Shan W, Song JJ, Fan MG, Knobbe ET (1997) J Sol-Gel Sci Technol 9:169

    CAS  Google Scholar 

  3. Goudjil, US Patent, 5581090 (1996)

  4. Goudjil K, Sandoval R (1998) Sens Rev 18:176

    Article  Google Scholar 

  5. Levy D, del Monte F, Otón JM, Fiskman G, Matías I, Datta P, López–Amo M (1997) J Sol-Gel Sci Technol 8:931

    CAS  Google Scholar 

  6. Levy D, del Monte F, López–Amo M, Otón JM, Datta P, Matías I (1995) J Appl Phys 77:2804

    Article  CAS  Google Scholar 

  7. Crano JC, Flood T, Knowles D, Kumar A, Van Germert B (1996) Pure Appl Chem 68:1395

    Article  CAS  Google Scholar 

  8. Ribot F, Lafuma A, Eychenne–Baron C, Sanchez C (2002) Adv Mater 14:1496

    Article  CAS  Google Scholar 

  9. Berkovic G, Krongauz V, Weiss V (2000) Chem Rev 100:1741

    Article  CAS  Google Scholar 

  10. Brown GH (1971) Photochromism: techniques of chemistry, vol 3. Wiley, New York

    Google Scholar 

  11. Crano JC, Guglielmetti R (1999) Organic photochromic and thermochromic compounds, vol 2. Plenum Press, New York

    Google Scholar 

  12. Levy D, Avnir D (1988) J Phys Chem 92:4734

    Article  CAS  Google Scholar 

  13. Favaro G, Malatesta V, Mazzucato U, Ottavi G, Romani A (1995) J Photochem Photobiol A Chem 87:235

    Article  CAS  Google Scholar 

  14. Luchina VG, Sychev IYu, Shienok AI, Zaichenko NL, Marevtsev VS (1996) J Photochem Photobiol A Chem 93:173

    Article  CAS  Google Scholar 

  15. Metelitsa AV, Micheau JC, Voloshin NA, Voloshina EN, Minkin VI (2001) J Phys Chem A 105:8417

    Article  CAS  Google Scholar 

  16. Metelitsa AV, Lokshin V, Micheau JC, Samat A, Guglielmetti R, Minkin VI (2002) Phys Chem Chem Phys 4:4340

    Article  CAS  Google Scholar 

  17. Wang M-S, Yeh C–L, Hu AT (1995) Polym Int 38:101

    Article  CAS  Google Scholar 

  18. Biteau J, Chapul F, Boilot J-P (1996) J Phys Chem 100:9024

    Article  CAS  Google Scholar 

  19. Raboin L, Matheron M, Biteau J, Gacoin T, Boilot J-P (2008) J Mater Chem 18:3242

    Article  CAS  Google Scholar 

  20. Kim CW, Oh SW, Kim YH, Cha HG, Kang YS (2008) J Phys Chem C 112:1140

    Article  CAS  Google Scholar 

  21. Lee DK, Cha HG, Pal U, Kang YS (2009) J Phys Chem B 113:1292

    Google Scholar 

  22. Zayat M, Pardo R, Levy D (2005) J Mater Chem 15:703

    Article  Google Scholar 

  23. Alvarez-Herrero A, Pardo R, Zayat M, Levy D (2007) J Opt Soc Am B 24:2097

    Article  CAS  Google Scholar 

  24. Alvarez-Herrero A, Garranzo D, Pardo R, Zayat M, Levy D (2008) Phys Stat Sol C 5:1160

    Article  CAS  Google Scholar 

  25. Hou L, Schmidt H (1996) Mater Lett 27:215

    Article  CAS  Google Scholar 

  26. Schaudel B, Guermeur C, Sánchez C, Nakatani K, Delaire JA (1997) J Mater Chem 7:61

    Article  CAS  Google Scholar 

  27. Ortiga F, Favaro G (2000) J Phys Chem B 104:12179

    Article  Google Scholar 

  28. Pardo R, Zayat M, Levy D (2010) C R Chimie 13:212

    Article  CAS  Google Scholar 

  29. Pardo R, Zayat M, Levy D (2011) Chem Soc Rev 40:672. doi:10.1039/C0CS00065E

    Article  CAS  Google Scholar 

  30. Zayat M, Levy D (2003) J Mater Chem 13:727

    Article  CAS  Google Scholar 

  31. Zayat M, Pardo R, Levy D (2003) J Mater Chem 13:2899

    Article  CAS  Google Scholar 

  32. Pardo R, Zayat M, Levy D (2006) J Mater Chem 16:1734

    Article  CAS  Google Scholar 

  33. Malatesta V, Millini R, Montanari L (1995) J Am Chem Soc 117:6258

    Article  CAS  Google Scholar 

  34. Malatesta V, Milosa M, Millini R, Lanzini L, Bortolus P, Monti S (1994) Mol Cryst Liq Cryst 246:303

    Article  CAS  Google Scholar 

  35. Malatesta V, Renzi F, Wis ML, Montanari L, Milosa M, Scotti D (1995) J Org Chem 60:5446

    Article  CAS  Google Scholar 

  36. Baillet G, Giusti G, Guglielmetti R (1993) J Photochem Photobiol A Chem 70:157

    Article  CAS  Google Scholar 

  37. Baillet G, Campradon M, Guglielmetti R, Giusti G, Aubert C (1994) J Photochem Photobiol A Chem 83:147

    Article  CAS  Google Scholar 

  38. Salemi-Delvaux, Luccioni-Houze B, Baillet G, Giusti G, Guglielmetti R (1995) J Photochem Photobiol A Chem 91:223

    Article  CAS  Google Scholar 

  39. R. Pardo, M. Zayat, D. Levy (2010) J Photochem Photobiol A Chem 210, 17, and references therein

  40. Novaki LP, El Seoud OA (1996) Ber Bunsenges Phys Chem 100:648

    Article  CAS  Google Scholar 

  41. Tada EB, Novaki LP, El Seoud OA (2000) J Phys Org Chem 13:679

    Article  CAS  Google Scholar 

  42. Golub AA, Zubenko AI, Zhmud BV (1996) J Colloid Interface Sci 179:482

    Article  CAS  Google Scholar 

  43. Frenkel-Mullerad H, Avnir D (2000) Chem Mater 12:3754

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Economia y Competitividad (Grant No. MAT2011-28981).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardo, R., Zayat, M. & Levy, D. Stability against photodegradation of a photochromic spirooxazine dye embedded in amino-functionalized sol–gel hybrid coatings. J Sol-Gel Sci Technol 63, 400–407 (2012). https://doi.org/10.1007/s10971-012-2801-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2801-z

Keywords

Navigation