Skip to main content
Log in

Microwave-assisted architectural control fabrication of 3D CdS structures

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A facile microwave-assisted solvothermal method was developed for the controlled synthesis of novel 3D CdS structures. Dendrite-, star-, popcorn- and hollow sphere-like CdS structures could be obtained by changing the reaction conditions including the reaction temperature and the amounts of reagents and solvents. The products were examined by using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman and photoluminescence spectroscopy. Results revealed that the final structures were related to the solvent properties such as surface tension and viscosity. The degree of supersaturation is also responsible for the morphology variation and it can be adjusted by the reaction temperature. The CdS products with different morphologies exhibited interesting shape-dependent optical properties and photocatalytic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  2. Hu JT, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445

    Article  CAS  Google Scholar 

  3. Wang X, Zhuang J, Peng Q, Li YD (2005) A general strategy for nanocrystal synthesi. Nature 437:121–124

    Article  CAS  Google Scholar 

  4. Yu JC, Li GS, Wang XC, Hu XL, Leung CW, Zhang ZD (2006) An ordered cubic Im3 m mesoporous Cr–TiO2 visible light photocatalyst. Chem Commun 25:2717–2719

    Article  Google Scholar 

  5. Lei ZB, Li JM, Ke YX, Zhang Y, Wang H, He GF (2001) Fabrication of macroporous cadmium sulfide with three-dimensional structure by solvothermal synthesis. J Mater Chem 7:1778–1780

    Article  Google Scholar 

  6. Jun YW, Lee SM, Kang NJ, Cheon J (2001) Controlled synthesis of multi-armed cds nanorod architectures using monosurfactant system. J Am Chem Soc 123:5150–5151

    Article  CAS  Google Scholar 

  7. Manna L, Scher EC, Alivisatos AP (2000) Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 122:12700–12706

    Article  CAS  Google Scholar 

  8. Xie RH, Bryant GW, Lee S, Jaskolski W (2002) Electron-hole correlations and optical excitonic gaps in quantum-dot quantum wells: tight-binding approach. Phys Rev B 65:235306/1–235306/4

    Article  CAS  Google Scholar 

  9. Morkel M, Weinhardt L, Lohmüller B, Heske C, Umbach E, Riedl W, Zweigart S, Karg F (2001) Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction. Appl Phys Lett 79:4482–4484

    Article  CAS  Google Scholar 

  10. Schlamp MC, Peng XG, Alivisatos AP (1997) Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J Appl Phys 82:5837–5842

    Article  CAS  Google Scholar 

  11. Peng XG, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS Core/Shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019–7029

    Article  CAS  Google Scholar 

  12. Wang ZL (2000) Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater 12:1295–1298

    Article  CAS  Google Scholar 

  13. Zhang J, Jiang FH, Zhang LD (2004) Fabrication of single-crystalline semiconductor CdS nanobelts by vapor transport. J Phys Chem B 108:7002–7005

    Article  CAS  Google Scholar 

  14. Yao QZ, Jin G, Zhou GT, Wang XC, Yu JC (2008) A novel intermediate-sacrificed route to polycrystalline nanorods consisting of highly oriented quantum dots of cubic CdS. J Nanosci Nanotechnol 8:3112–3116

    Article  CAS  Google Scholar 

  15. Kang CC, Lai CW, Peng HC, Shyue JJ, Chou PT (2007) Surfactant- and temperature- controlled CdS nanowire formation. Small 3:1882–1885

    Article  CAS  Google Scholar 

  16. Ip KM, Wang CR, Li Q, Hark SK (2004) Excitons and surface luminescence of CdS nanoribbons. Appl Phys Lett 84:795–796

    Article  CAS  Google Scholar 

  17. Chu HB, Li XM, Chen GD, Zhou WW, Zhang Y, Jin Z, Xu JJ, Li Y (2005) Shape-controlled synthesis of CdS nanocrystals in mixed solvents. Cryst Growth Des 5:1801–1806

    Article  CAS  Google Scholar 

  18. Zhao PT, Huang KX (2008) Preparation and characterization of netted sphere-like CdS nanostructures. Cryst Growth Des 8:717–722

    Article  CAS  Google Scholar 

  19. Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell L (1986) The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 27:279–282

    Article  CAS  Google Scholar 

  20. Hu XL, Yu JC, Gong JM, Li Q, Li GS (2007) α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv Mater 19:2324–2329

    Article  CAS  Google Scholar 

  21. Hu XL, Yu JC, Gong JM, Li Q (2007) Rapid mass production of hierarchically porous ZnIn2S4 submicrospheres via a microwave-solvothermal process. Cryst Growth Des 7:2444–2448

    Article  CAS  Google Scholar 

  22. Zhang DQ, Li GS, Yang XF, Yu JC (2009) A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. Chem Commun 29:4381–4383

    Article  Google Scholar 

  23. Li GS, Zhang DQ, Yu JC, Leung MKH (2010) An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide. Environ Sci Technol 44:4276–4281

    Article  CAS  Google Scholar 

  24. Kundu S, Liang H (2008) Photochemical synthesis of electrically conductive CdS nanowires on DNA scaffolds. Adv Mater 20:826–831

    Article  CAS  Google Scholar 

  25. Yang P, Xie Y, Qian YT, Liu XM (1999) A cluster growth route to quantum-confined CdS nanowires. Chem Commun 14:1293–1294

    Google Scholar 

  26. Li YD, Liao HW, Ding Y, Fan Y, Zhang Y, Qian YT (1999) Solvothermal elemental direct reaction to CdE (E = S, Se, Te) semiconductor nanorod. Inorg Chem 38:1382–1387

    Article  CAS  Google Scholar 

  27. Xiong SL, Xi BJ, Wang CM, Zou GF, Fei LF, Wang WZ, Qian YT (2007) Shape-controlled synthesis of 3D and 1D structures of CdS in a binary solution with l-Cysteine’s assistance. Chem Eur J 13:3076–3081

    Article  CAS  Google Scholar 

  28. Jang JS, Joshi UA, Lee JS (2007) Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J Phys Chem C 111:13280–13287

    Article  CAS  Google Scholar 

  29. Barnard AS, Curtiss LA (2005) Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett 5:1261

    Article  CAS  Google Scholar 

  30. Cao H, Gong Q, Qian X, Wang H, Zai J, Zhu Z (2007) Synthesis of 3D hierarchical dendrites of lead chalcogenides in large scale via microwave-assistant method. Cryst Growth Des 7:425–429

    Article  CAS  Google Scholar 

  31. Xu D, Liu ZP, Liang JB, Qian YT (2005) Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol. J Phys Chem B 109:14344–14349

    Article  CAS  Google Scholar 

  32. Zhang B, Ye XC, Hou WY, Zhao Y, Xie Y (2006) Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. J Phys Chem B 110:8978–8985

    Article  CAS  Google Scholar 

  33. Dick KA, Depper K, Larsson MW, Wallenberg LR, Samuelson L (2004) Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat Mater 3:380–384

    Article  CAS  Google Scholar 

  34. Mullins WW, Sekerka RF (1963) Morphological stability of a particle growing by diffusion or heat Flow. J Appl Phys 34:323–329

    Article  CAS  Google Scholar 

  35. Li SW, Lowengrub JS, Leo PH, Cristini V (2005) Nonlinear stability analysis of self-similar crystal growth: control of the Mullins-Sekerka instability. J Cryst Growth 277:578–592

    Article  CAS  Google Scholar 

  36. Ben-Jacob E, Garik P (1990) The formation of patterns in non-equilibrium growth. Nature 343:523–530

    Article  Google Scholar 

  37. Sunagawa I (1981) Characteristics of crystal growth in nature as seen from the morphology of mineral crystals. Bull Mineral 104:81–87

    CAS  Google Scholar 

  38. Peng ZA, Peng XG (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123:1389–1395

    Article  CAS  Google Scholar 

  39. Cheng Y, Wang YS, Bao F, Chen DQ (2006) Shape control of monodisperse CdS nanocrystals:hexagon and pyramid. J Phys Chem B 110:9448–9451

    Article  CAS  Google Scholar 

  40. Pinna N, Weiss K, Urban J, Pileni MP (2001) Triangular CdS nanocrystals: structural and optical studies. Adv Mater 13:261–264

    Article  CAS  Google Scholar 

  41. Wang F, Xu GY, Zhang ZQ, Xin X (2006) Synthesis of monodisperse CdS nano-spheres in inverse microemulsion system formed by dendritic polyether copolymer. Eur J Inorg Chem 1:109–114

    Article  CAS  Google Scholar 

  42. Nandakumar P, Vijayan C, Rajakshmi M, Arora AK, Murti YVGS (2001) Raman spectra of CdS nanocrystals in Nafion: longitudinal optical and confined acoustic phonon modes. Phys E 11:377–383

    Article  CAS  Google Scholar 

  43. Donahue EJ, Roxburgh A, Yurchenko M (1998) Sol-gel preparation of zinc sulfide using organic dithiols. Mater Res Bull 33:323–329

    Article  CAS  Google Scholar 

  44. Nanda KK, Sarangi SN, Sahu SN, Deb SK, Behera SN (1999) Raman spectroscopy of CdS nanocrystalline semiconductors. Phys B 262:31–39

    Article  CAS  Google Scholar 

  45. Zhu J, Wang SL, Xie SH, Li HX (2011) Hexagonal single crystal growth of WO3 nanorods along a [110] axis with enhanced adsorption capacity. Chem Commun 15:4403–4405

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the National Natural Science Foundation of China (21007040, 20937003, 21047009), the Research Fund for the Doctoral Program of Higher Education (20103127120005), the Innovation Program of Shanghai Municipal Education Commission (12YZ079), the Pujiang Talents Programme and Basic Research Programme of Shanghai Municipality (11PJ1407500, 10160503200, 11ZR1426300, 07dz22303, 09JC1411400, 10230711600, S30406, 0952nm00500, 09520715300, 10YZ69, 10QA1405300), and by a Scheme administrated by Shanghai Normal University (SK201104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guisheng Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3916 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Wen, M., Jiang, B. et al. Microwave-assisted architectural control fabrication of 3D CdS structures. J Sol-Gel Sci Technol 62, 140–148 (2012). https://doi.org/10.1007/s10971-012-2698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2698-6

Keywords

Navigation