Skip to main content
Log in

Preparation of CuAlO2 thin films with high transparency and low resistivity using sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

CuAlO2 thin films were deposited on quartz substrates by sol–gel process using copper acetate monohydrate and aluminum nitrate nanohydrate as starting materials and isopropyl alcohol as solvent. The influence of annealing temperature on the film structure and the phase evolution of CuAlO2 films were investigated, so as to obtain CuAlO2 films with superior performance. The phase compositions of the films were dependent on the annealing temperature. The films annealed at temperatures below 400 °C were amorphous while those annealed above 400 °C were polycrystalline. The phases of CuO and CuAl2O4 appeared gradually with the increase of annealing temperature. When the heat treatment temperature was elevated to 900 °C, the uniform and dense films with single phase of CuAlO2 were obtained, with a resistivity of 15 Ωcm. The transmittance of the 310 nm-thick CuAlO2 film is 79% at 780 nm and the direct optical band gap is 3.43 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thomas G (1997) Nature 389:907–908

    Article  CAS  Google Scholar 

  2. Banerjee AN, Chattopadhyay KK (2005) Prog Cryst Growth Charact Mater 50:52–105

    Article  CAS  Google Scholar 

  3. Kawazoe H, Yasukawa M, Hyodo H et al (1997) Nature 389:939–942

    Article  CAS  Google Scholar 

  4. Dittrich T, Dloczik L, Guminskaya T et al (2004) Appl Phys Lett 85:742–744

    Article  CAS  Google Scholar 

  5. Zheng XG, Taniguchi K, Takahashi A et al (2004) Appl Phys Lett 85:1728–1729

    Article  CAS  Google Scholar 

  6. Banerjee AN, Ghosh CK et al (2005) Physics B 370:264–276

    Article  CAS  Google Scholar 

  7. Park K, Ko KY et al (2006) Mater Sci Eng B 129:1–7

    Article  CAS  Google Scholar 

  8. Koriche N, Bouguelia A et al (2005) Int J Hydrogen Energy 30:693–699

    Article  CAS  Google Scholar 

  9. Yanagi H, Inoue SI, Ueda K et al (2000) J Appl Phys 88:4159–4163

    Article  CAS  Google Scholar 

  10. Banerjee AN, Kundoo S, Chattopadhyay KK (2003) Thin Solid Films 440:5–10

    Article  CAS  Google Scholar 

  11. Wang Y, Gong H, Zhu F, Liu L et al (2001) Mater Sci Eng B 85:131–134

    Article  Google Scholar 

  12. Singh M, Rao AR, Dutta V (2008) Mater Lett 62:3613–3616

    Article  CAS  Google Scholar 

  13. Tonooka K, Shimokawa K, Nishimura O (2002) Thin Solid Films 411:129–133

    Article  CAS  Google Scholar 

  14. Su CT, Lee HY, Wu BK, Chern MY (2011) J Cryst Growth 328:25–29

    Article  CAS  Google Scholar 

  15. Götzendörfer S, Polenzky C, Ulrich S, Löbmann P (2009) Thin Solid Films 518:1153–1156

    Article  Google Scholar 

  16. Li G, Zhu XB, Lei HC, Jiang HF et al (2010) J Sol Gel Sci Technol 53:641–646

    Article  CAS  Google Scholar 

  17. Ohashi M, Iida Y, Morikawa H (2002) J Am Ceram Soc 85:270–272

    Article  CAS  Google Scholar 

  18. Patnaik P (2003) Handbook of inorganic chemicals. McGraw-Hill, New York

    Google Scholar 

  19. John LD, Charles ES, John CR (1980) USA: United States Patent 4223000

  20. Ingram BJ, Mason TO, Asahi R et al (2001) Phys Rev B: Condens Matter 64:155114-1–155114-7

    Article  Google Scholar 

  21. Ren Y, Zhao GY, Chen YQ (2011) Appl Surf Sci 258:914–918

    Article  CAS  Google Scholar 

  22. Tauc J, Grigorovici R, Yancu A (1966) Phys Stat Sol 15:627–637

    Article  CAS  Google Scholar 

  23. Bube RH (1974) Electronic properties of crystalline solids. Academic Press, London

    Google Scholar 

  24. Bouzidi C, Bouzouita H, Timoumi A, Rezig B (2005) Mater Sci Eng B 118:259–263

    Article  Google Scholar 

  25. Deng ZH, Fang XD, Tao RH, Dong WW et al (2008) J Alloys Compd 466:408–411

    Article  CAS  Google Scholar 

  26. Shy JH, Tseng BH (2008) J Phys Chem Solids 69:547–550

    Article  CAS  Google Scholar 

  27. Hsieh PH, Lu YM, Hwang WS et al (2010) Surf Coat Technol 205:S206–S209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper is supported by National Natural Science Foundation of China (No. 51072163), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20096118110002), and the Fund of Educational Commission of Shaanxi Province (No. 2010JK746).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Y., Zhao, G., Zhang, C. et al. Preparation of CuAlO2 thin films with high transparency and low resistivity using sol–gel method. J Sol-Gel Sci Technol 61, 565–569 (2012). https://doi.org/10.1007/s10971-011-2660-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2660-z

Keywords

Navigation