Skip to main content
Log in

Influence of synthesis conditions on the cross-link architecture of silsesquioxanes prepared by in situ water production route

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The esterification reaction between carboxylic acids and alcohols has been used as the source of water for the hydrolysis-condensation reactions of difunctional and trifunctional organosilanes. Diphenylsilanediol (DPDO) has been reacted with methacryloxypropyltrimethoxysilane (MPTMS) and glycidoxypropyltrimethoxysilane (GPTMS) and the obtained products have been characterized by vibrational spectroscopy (FT-IR, FT-Raman) nuclear magnetic resonance (NMR) and gel permeation chromatography. The relation between water availability from the in situ water production process (ISWP) and silsesquioxanes morphology has been evaluated in the case of DPDO/MPTMS mixtures, changing molecular features of acids and alcohols. These measurements have shown that the pK of the carboxylic acid used in the esterification reaction has a valuable influence on the silanes cross-linking ability. Acids with low pK values and heteroatoms substituents favor the silane hydrolysis and allow the growth of high molecular weight species. Using acetic acid/ethanol mixture leads to the best results for DPDO/MPTMS reaction, with a narrow distribution of silsesquioxane species. Under the same conditions, the reaction of DPDO with GPTMS produces polymeric species and only avoiding the presence of the difunctional precursor allows to limiting the silsesquioxanes species growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sanchez C, Ribot F (1994) New J Chem 18:1007–1047

    CAS  Google Scholar 

  2. Gomez-Romero P, Sanchez C (2005) Functional hybrid materials. Wiley VCH, Weinheim

    Google Scholar 

  3. Schottner G, Rose K, Posset U (2003) J Sol-Gel Sci Technol 27:71–79

    Article  CAS  Google Scholar 

  4. Groenwolt M (2008) Prog Org Coat 61:106–109

    Article  Google Scholar 

  5. Gallardo J, Duran A, Garcia I, Celis JP, Arenas MA, Conde A (2003) J Sol-Gel Sci Technol 27:175–183

    Article  CAS  Google Scholar 

  6. Bescher E, Piqué F, Stulik D, Mackenzie JD (2000) J Sol-Gel Sci Technol 19:215–218

    Article  CAS  Google Scholar 

  7. Hoffmann M, Amberg-Schwab S (1998) Mat Chem Soc Symp Proc 519:309–314

    Article  CAS  Google Scholar 

  8. Dirè S, Pagani E, Ceccato R, Carturan G (1997) J Mater Chem 7:919–922

    Article  Google Scholar 

  9. Rottman C, Grader G, Avnir D (2001) Chem Mater 13:3631–3934

    Article  CAS  Google Scholar 

  10. Dirè S, Babonneau F, Sanchez C, Livage J (1992) J Mater Chem 2:239–244

    Article  Google Scholar 

  11. Dirè S, Callone E, Quaranta A, Tagliazucca V (2011) Mater Chem Phys 126:909–917

    Article  Google Scholar 

  12. Avnir D, Braun S, Lev O, Ottolenghi M (1994) Chem Mater 6:1605–1614

    Article  CAS  Google Scholar 

  13. Tang Q, Xu Y, Wu D, Sun Y, Wang J, Xu J, Deng F (2006) J Control Release 114:41–46

    Article  CAS  Google Scholar 

  14. Blanc AC, Macquarrie DJ, Valle S, Renard G, Quinn CR, Brunel D (2000) Green Chem 2:283–288

    Article  CAS  Google Scholar 

  15. Macquarrie DJ, Maggi R, Mazzacani A, Sartori G, Sartorio R (2003) Appl Catal A 246:183–188

    Article  CAS  Google Scholar 

  16. Harmer MA, Sun Q, Michalczyk MJ, Yang Z (1997) Chem Commun 18:1803–1804

    Article  Google Scholar 

  17. Inama L, Dirè S, Carturan G, Cavazza A (1993) J Biotechnol 30:197–210

    Article  CAS  Google Scholar 

  18. Streppel U, Dannberg P, Wächter C, Bräuer A, Fröhlich L, Houbertz R, Poppal M (2000) Opt Mater 21:475–483

    Article  Google Scholar 

  19. Innocenzi P, Lebeau B (2005) J Mater Chem 15:3821–3831

    Article  CAS  Google Scholar 

  20. Kickelbick G (2003) Prog Polym Sci 28:83–114

    Article  CAS  Google Scholar 

  21. Wen J, Wilkes GL (1996) Chem Mater 8:1667–1681

    Article  CAS  Google Scholar 

  22. Sanchez C, de AA, Soler-Illia GJDA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Chem Mater 13:3061–3083

    Article  CAS  Google Scholar 

  23. Dirè S (2003) J Sol-Gel Sci Technol 26:285–290

    Article  Google Scholar 

  24. Ro HW, Park ES, Soles CL, Yoon DY (2010) Chem Mater 22:1330–1339

    Article  CAS  Google Scholar 

  25. Buestrich R, Kahlenberg F, Popall M, Dannberg P, Muller-Fiedler R, Roesch O (2001) J Sol-Gel Sci Technol 20:181–186

    Article  CAS  Google Scholar 

  26. Bae B-S (2004) J Sol-Gel Sci Technol 31:309–315

    Article  CAS  Google Scholar 

  27. Houbertz R, Schulz J, Frönlich L, Domann G, Popall M (2003) Mat Res Soc Symp Proc 769, H7.4.1

  28. Nam K-H, Lee T-H, Bae B-S, Popall M (2006) J Sol-Gel Sci Technol 39:255–260

    Article  CAS  Google Scholar 

  29. Dirè S, Egger P, Di Vona ML, Trombetta M, Licoccia S (2004) J Sol-Gel Sci Technol 32:57–61

    Article  Google Scholar 

  30. Di Vona ML, Trombetta M, Dirè S, Egger P, D’Ottavi C, Licoccia S (2005) J Sol-Gel Sci Technol 35:151–157

    Article  CAS  Google Scholar 

  31. Diré S, Brusatin G, Di Vona ML, Egger P, Ferrari M, Innocenzi P, Licoccia S, Romagnoli P, Trombetta M, Zampedri L (2005) J Eur Ceram Soc 25:2051–2054

    Article  Google Scholar 

  32. Dirè S, Tagliazucca V, Brusatin G, Bottazzo J, Fortunati I, Signorini R, Dainese T, Andraud C, Trombetta M, Di Vona ML, Licoccia S (2008) J Sol-Gel Sci Technol 48:217–223

    Article  Google Scholar 

  33. Fortunati I, Dainese T, Signorini R, Bozio R, Tagliazucca V, Dirè S, Lemercier G, Mulatier JC, Andraud C, Schiavuta P, Bottazzo J, Della Giustina G, Brusatin G, Guglielmi M (2007) SPIE 6645:664520

    Article  Google Scholar 

  34. Klein LC (1985) Ann Rev Mater Sci 15:227–248

    Article  CAS  Google Scholar 

  35. Fortunati I, Dainese T, Signorini R, Bozio R, Tagliazucca V, Dirè S, Lemercier G, Mulatier JC, Andraud C, Schiavuta P, Bottazzo J, Della Giustina G, Franco A, Brusatin G, Guglielmi M (2008) SPIE 6988:69881 J-1-9

  36. Dirè S, Licoccia S (2010) In: Wyman EB, Skief MC (eds) Organosilanes: properties, performance and applications. Nova Science Publishers, USA

    Google Scholar 

  37. Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR (1989) Texbook of practical organic chemistry Vogel’s, 5th edn. Longman Scientific & Technical, UK

    Google Scholar 

  38. Orel B, Jese R, Vilcnik A, Lavrencic Stangar U (2005) J Sol-Gel Sci Technol 34:251–265 and reference therein

    Google Scholar 

  39. Innocenzi P, Brusatin G, Guglielmi M, Babonneau F (2005). In: Almeida RM (ed) Sol-Gel science and technology- processing characterization and applications, vol II. Kluwer Academic Publishers, Netherlands

  40. Li X, King A (1996) J Non-Crist Solids 204:235–242

    Article  CAS  Google Scholar 

  41. Gnyba M, Keranen M, Kozanecki M, Bogdanowicz R, Kosmowski BB, Wroczynski P (2002) Opto-Electron Rev 10:137–143

    CAS  Google Scholar 

  42. Gigant K, Posset U, Schottner G, Baia L, Kiefer W, Popp J (2003) J Sol–Gel Sci Technol 26:369–373

    Article  CAS  Google Scholar 

  43. Calzaferri G, Herren D, Imhof R (1991) Helv Chim Acta 74:1278

    Article  CAS  Google Scholar 

  44. Yoshino H, Kamiya K, Nasu H (1990) J Non Cryst Solids 126:68–78

    Article  CAS  Google Scholar 

  45. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Chem Rev 95:1409–1430

    Article  CAS  Google Scholar 

  46. Yoshinaga N, Yamada N, Katayama S (2003) J Sol Gel Sci Technol 28:65–70

    Article  CAS  Google Scholar 

  47. Innocenzi P, Sassi A, Brusatin G, Guglielmi M, Favretto D, Bertani R, Venzo A, Babonneau F (2001) Chem Mater 13:3635–3643

    Article  CAS  Google Scholar 

  48. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts. Wiley, UK

    Google Scholar 

  49. Agaskar PA (1992) J Chem Soc Chem Commun 14:1024–1026

    Article  Google Scholar 

  50. Lu R, Honda T, Ishimura T, Miyakoshi T (2005) Polym J 37:309–315

    Article  CAS  Google Scholar 

  51. Matèjka L, Dukh O, Brus J, Simonsick WJ, Meissner B (2000) J Non-Cryst Solids 270:34–47

    Article  Google Scholar 

  52. Myers SA, Assink RA, Loy DA, Shea KJ (2000) J Chem Soc Perkin Trans 2:545–549

    Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge the collaboration of G. Brusatin (University of Padova), S. Licoccia (University of Roma-Tor Vergata), and J. Galy (INSA-Lyon). MIUR is acknowledged for the financial support (PRIN 2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Dirè.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagliazucca, V., Callone, E. & Dirè, S. Influence of synthesis conditions on the cross-link architecture of silsesquioxanes prepared by in situ water production route. J Sol-Gel Sci Technol 60, 236–245 (2011). https://doi.org/10.1007/s10971-011-2599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2599-0

Keywords

Navigation