Skip to main content
Log in

Controlling the morphology of a zinc ferrite-based aerogel by choice of solvent

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Zinc ferrite-based aerogels were prepared by the epoxide addition method. The effects of changing the reaction solvent were investigated. The porosity of the resultant materials was investigated by gas adsorption techniques while the microstructure of the aerogels was investigated by scanning electron microscopy and transmission electron microscopy. The solvent in which the gels were formed was found to have a profound impact on the surface morphology of the aerogels and the size of the nanoparticles therein. The aerogels were further analyzed by thermal gravimetric analysis and powder X-ray diffraction. After annealing at 350 °C, the porous material is found to maintain its nanocrystalline properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Husing N, Schubert U, Misof K, Fratzl P (1998) Chem Mater 10:3024–3032

    Article  Google Scholar 

  2. Volksen W, Miller RD, Dubois G (2009) Chem Rev 110:56–110

    Article  Google Scholar 

  3. Bali S, Huggins FE, Huffman GP, Ernst RD, Pugmire RJ, Eyring EM (2008) Energy Fuels 23:14–18

    Article  Google Scholar 

  4. Davis RJ, Liu Z (1997) Chem Mater 9:2311–2324

    Article  CAS  Google Scholar 

  5. Hao Z, Zhu Q, Jiang Z, Hou B, Li H (2009) Fuel Process Technol 90:113–121

    Article  CAS  Google Scholar 

  6. Ma Z, Dunn BC, Turpin GC, Eyring EM, Ernst RD, Pugmire RJ (2007) Fuel Process Technol 88:29–33

    Article  CAS  Google Scholar 

  7. Duarte F, Maldonado-Hódar FJ, Pérez-Cadenas AF, Madeira LM (2009) Appl Catal B: Environ 85:139–147

    Article  CAS  Google Scholar 

  8. Gill S, Brown P, Ogundiya M, Hope-Weeks L (2010) J Sol-Gel Sci Technol 53:635–640

    Article  CAS  Google Scholar 

  9. Mizushima Y, Hori M (1992) Appl Catal A: Gen 88:137–148

    Article  CAS  Google Scholar 

  10. Fesmire JE, Sass JP (2008) Cryog 48:223–231

    Article  CAS  Google Scholar 

  11. Deng Z, Wang J, Wu A, Shen J, Zhou B (1998) J Non-Cryst Solids 225:101–104

    Article  CAS  Google Scholar 

  12. Ahmed MS, Attia YA (1998) Appl Therm Eng 18:787–797

    Article  CAS  Google Scholar 

  13. Tappan BC, Huynh MH, Hiskey MA, Chavez DE, Luther EP, Mang JT, Son SF (2006) J Am Chem Soc 128:6589–6594

    Article  CAS  Google Scholar 

  14. Suh DJ, Park T-J (1996) Chem Mater 8:509–513

    Article  CAS  Google Scholar 

  15. Mulik S, Sotiriou-Leventis C, Leventis N (2007) Chem Mater 19:6138–6144

    Article  CAS  Google Scholar 

  16. Loche D, Casula M, Falqui A, Marras S, Corrias A (2010) J Nanosci Nanotech 10:1008

    Article  CAS  Google Scholar 

  17. Gill SK, Hope-Weeks LJ (2009) Chem Commun 45:4384–4386

    Article  Google Scholar 

  18. Gash AE, Tillotson TM, Satcher JH Jr, Hrubesh LW, Simpson RL (2001) J Non-Cryst Solids 285:22–28

    Article  CAS  Google Scholar 

  19. Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher JH (2004) Chem Mater 17:395–401

    Article  Google Scholar 

  20. Gash AE, Satcher JH, Simpson RL (2003) Chem Mater 15:3268–3275

    Article  CAS  Google Scholar 

  21. Kistler SS (1931) Nat 127:741

    Article  CAS  Google Scholar 

  22. Gao YP, Sisk CN, Hope-Weeks LJ (2007) Chem Mater 19:6007–6011

    Article  CAS  Google Scholar 

  23. Shobe AM, Gill SK, Hope-Weeks LJ (2010) J Non-Cryst Solids 356:1337–1343

    Article  CAS  Google Scholar 

  24. Gash AE, Satcher JJH, Simpson RL (2004) J Non-Cryst Solids 350:145–151

    Article  CAS  Google Scholar 

  25. Brown P, Hope-Weeks L (2009) J Sol-Gel Sci Technol 51:238–243

    Article  CAS  Google Scholar 

  26. Eid J, Pierre AC, Baret G (2005) J Non-Cryst Solids 351:218–227

    Article  CAS  Google Scholar 

  27. Chervin CN, Clapsaddle BJ, Chiu HW, Gash AE, Satcher JH, Kauzlarich SM (2006) Chem Mater 18:4865–4874

    Article  CAS  Google Scholar 

  28. D’Souza L, Richards, R (2007) Synthesis of metal-oxide nanoparticles: liquid-solid transformations. In: Rodriguez JA, Fernandez-Garcia M (eds) Synthesis, properties, and applications of oxide nanomaterials. Wiley, Hoboken, p 84

  29. Zhou X, Xu W, Liu G, Panda D, Chen P (2009) J Am Chem Soc 132:138–146

    Article  Google Scholar 

  30. Joo SH, Park JY, Renzas JR, Butcher DR, Huang W, Somorjai GA (2010) Nano Lett 10:2709–2713

    Article  CAS  Google Scholar 

  31. Cuenya BR (2010) Thin Solid Films 518:3127–3150

    Article  CAS  Google Scholar 

  32. Yu H, Liu Y, Brock SL (2009) ACS Nano 3:2000–2006

    Article  CAS  Google Scholar 

  33. Corrias A, Casula MF, Falqui A, Paschina G (2004) Chem Mater 16:3130–3138

    Article  CAS  Google Scholar 

  34. Bohra M, Prasad S, Kumar N, Misra DS, Sahoo SC, Venkataramani N, Krishnan R (2006) Appl Phys Lett 88:262506–262508

    Article  Google Scholar 

  35. Hochepied JF, Bonville P, Pileni MP (2000) J Phys Chem B 104:905–912

    Article  CAS  Google Scholar 

  36. Meng W, Li F, Evans DG, Duan X (2004) J Porous Mater 11:97–105

    Article  CAS  Google Scholar 

  37. Zhang R, Huang J, Zhao J, Sun Z, Wang Y (2007) Energy Fuels 21:2682–2687

    Article  CAS  Google Scholar 

  38. Greenwood NN, Earnshaw A (1997) Chemistry of the elements. Elsevier, New York

    Google Scholar 

  39. Roy MK, Verma HC (2006) J Magn Magn Mater 306:98–102

    Article  CAS  Google Scholar 

  40. Baranchikov AE, Ivanov VK, Oleinikov NN, Tret’yakov YD (2004) Inorg Mater 40:1091–1094

    Article  CAS  Google Scholar 

  41. Shenoy SD, Joy PA, Anantharaman MR (2004) J Magn Magn Mater 269:217–226

    Article  CAS  Google Scholar 

  42. Mohanan JL, Brock SL (2004) J Non-Cryst Solids 350:1–8

    Article  CAS  Google Scholar 

  43. Gill S, Brown P, Hope-Weeks L (2010) J Sol-Gel Sci Technol 57:68–75

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Texas Tech University Imaging Center for use of their facilities. We are especially grateful to Mary Catherine Hastert and Dr. Mark Grimson for their gracious assistance with TEM and SEM analysis respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louisa J. Hope-Weeks.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, P., Cearnaigh, D.U., Fung, E.K. et al. Controlling the morphology of a zinc ferrite-based aerogel by choice of solvent. J Sol-Gel Sci Technol 61, 104–111 (2012). https://doi.org/10.1007/s10971-011-2597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2597-2

Keywords

Navigation