Skip to main content
Log in

Synthesis and characterization of zinc titanate fibers by sol-electrospinning method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A facile and economic electrospinning approach has been developed for the synthesis of zinc titanate-rutile composite fibers as a nanofibrous mat at the first time. The composite fibers with different morphologies were obtained by calcination of the PVP/Ti(OC4H9)4–Zn(CH3COO)2 fibers. The reaction mechanism was characterized by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transform infraction spectroscopy (FT-IR) spectra techniques. According to the thermal analysis, the phase of ZnTiO3 occurred at 450 °C and it decomposed at 885 °C. FE-SEM micrographs indicated that the as-spun fibers were round and had a rather uniform and smooth surface with the diameters in the range of 300–800 nm over its length. Its morphology is greatly affected by the calcination temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pullar RC, Farrah S, McNN Alford (2007) MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. J Eur Cerm Soc 27:1059–1063

    Article  CAS  Google Scholar 

  2. Chen H, Weng M, Horng J et al (2005) Effect of bismuth addition on sintering behavior and microwave dielectric properties of zinc titanate ceramics. J Electron Mater 34:119–124

    Article  CAS  Google Scholar 

  3. Hsieh M, Chen L, Hsu H et al (2008) Effect of oxide additives on the low-temperature sintering of dielectrics (Zn, Mg)TiO3. Mater Res Bull 43:3122–3129

    Article  CAS  Google Scholar 

  4. Kim H, Kim S, Nahm S et al (1999) Low-temperature sintering and microwave dielectric properties of zinc metatitanate-rutile mixtures using boron. J Am Ceram Soc 82:3043–3048

    Article  CAS  Google Scholar 

  5. Yue Zh, Yan J, Zhao F et al (2008) Low-temperature sintering and microwave dielectric properties of ZnTiO3-based LTCC materials. J Electroceram 21:141–144

    Article  CAS  Google Scholar 

  6. Obradovic N, Mitric M, Nikolic MV et al (2009) Influence of MgO addition on the synthesis and electrical properties of sintered zinc–titanate ceramics. J Alloy Compd 471:272–277

    Article  CAS  Google Scholar 

  7. Ye C, Pan SS, Teng XM et al (2008) Preparation and optical properties of nanocrystalline thin films in the ZnO–TiO2 system. Appl Phys A 90:375–378

    Article  CAS  Google Scholar 

  8. Park J, Choi S, Lee J et al (2009) Synthesis and gas sensing properties of TiO2-ZnO core-shell nanofibers. J Am Ceram Soc 92:2552–2554

    Google Scholar 

  9. Lee T, Kwon W, Chang W et al (1997) A study regeneration of zinc titanate sorbents for H2S removal. Korean J Chem Eng 14:513–518

    Article  CAS  Google Scholar 

  10. Chen ZX, Derking A, Koot W et al (1996) Dehydrogenation of isobutene over zinc titanate thin film catalysts. J Catal 161:730–741

    Article  CAS  Google Scholar 

  11. Souza SC, Souza MAF, Lima SJG et al (2005) The effects of Co, Ni and Mn on the thermal processing of Zn2TiO4 pigments. J Therm Anal Calorim 79:455–459

    Article  CAS  Google Scholar 

  12. Hong Zh, Wei M, Deng Q et al (2010) A new anode material made of Zn2Ti3O8 nanowires: synthesis and electrochemical properties. Chem Commun 46:740–742

    Article  CAS  Google Scholar 

  13. Dulin FH, Rase DE (1960) Phase equilibria in the system ZnO–TiO2. J Am Ceram Soc 43:125–131

    Article  CAS  Google Scholar 

  14. Bartram SF, Slepetys RA (1961) Compound formation and crystal structure in the system ZnO–TiO2. J Am Ceram Soc 44:493–499

    Article  Google Scholar 

  15. Yang J, Swisher JH (1996) The phase stability of Zn2Ti3O8. Mater Charact 37:153–159

    Article  CAS  Google Scholar 

  16. Qian D, Gerward L, Jiang JZ (2004) Deformation-induced reactions of ZnO and TiO2. J Mater Sci 39:5389–5392

    Article  CAS  Google Scholar 

  17. Labus N, Obradović N, Srećković T et al (2005) Influence of mechanical activation on synthesis of zinc metatitanate. Sci Sinter 37:115–122

    Article  CAS  Google Scholar 

  18. Zhao L, Liu F, Wang X et al (2005) Preparation and characterization of ZnTiO3 powders by sol-gel process. J Sol-Gel Sci Techn 33:103–106

    Article  CAS  Google Scholar 

  19. Hosono E, Fujihara Sh, Onuki M et al (2004) Low-temperature synthesis of nanocrystalline zinc titanate materials with high specific surface area. J Am Ceram Soc 87:1785–1788

    Article  CAS  Google Scholar 

  20. Xing X, Zhang C, Qiao L et al (2006) Facile preparation of ZnTiO3 ceramic powders in sodium/potassium chloride melts. J Am Ceram Soc 89:1150–1152

    Article  CAS  Google Scholar 

  21. Vaezi MR, Kandjani AE, Nikzad L et al (2007) Synthesis of Zn2TiO4 and ZnTiO3 nanocomposites by the CBD method. Mater Sci-Poland 25:1109–1117

    CAS  Google Scholar 

  22. Pookmanee P, Yotasing J, Phanichphant S (2008) Chemical synthesis and characterization of ZnTiO3 powder prepared by the coprecipitation oxalate method. Adv Mater Res 55–57:65–68

    Article  Google Scholar 

  23. Kim JW, Kim SW, Park KS et al (2006) Synthesis and characterization of the ZnO–TiO2 nanoparticles by a hydrothermal processing. Key Eng Mater 324–325:1297–1300

    Article  Google Scholar 

  24. Li D, McCann JT, Xia Y (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89:1861–1869

    Article  CAS  Google Scholar 

  25. Ramaseshan R, Ramakrishna S (2007) Zinc titanate nanofibers for the detoxification of chemical warfare simulants. J Am Ceram Soc 90:1836–1842

    Article  CAS  Google Scholar 

  26. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170

    Article  CAS  Google Scholar 

  27. Yuh J, Perez L, Sigmund W et al (2007) Sol-gel based synthesis of complex oxide nanofibers. J Sol-Gel Sci Techn 42:323–329

    Article  CAS  Google Scholar 

  28. Moon J, Park J, Lee S et al (2009) Structure and electrical properties of electrospun ZnO–NiO mixed oxide nanofibers. Curr Appl Phys 9:S213–S216

    Article  Google Scholar 

  29. Kong CS, Lee TH, Lee SH et al (2007) Nano-web formation by the electrospinning at various electric fields. J Mater Sci 42:8106–8122

    Article  CAS  Google Scholar 

  30. Rutledge GC, Fridrikh SV (2007) Formation of fibers by electrospinning. Adv Drug Deliver Rev 59:1384–1391

    Article  CAS  Google Scholar 

  31. Chandrasekar R, Zhang L, Howe JY et al (2009) Fabrication and characterization of electrospun titania nanofibers. Mater Sci 44:1198–1205

    Article  CAS  Google Scholar 

  32. Sigmund W, Yuh J, Park H et al (2006) Processing and structure relationship in electrospinning of ceramic fibers systems. J Am Ceram Soc 89:395–407

    Article  CAS  Google Scholar 

  33. Lin D, Pan W, Wu H (2007) Morphological control of centimeter long aluminum-doped zinc oxide nanofibers prepared by electrospinning. J Am Ceram Soc 90:71–76

    Article  CAS  Google Scholar 

  34. Hou L, Hou Y, Zhu M et al (2005) Formation and transformation of ZnTiO3 prepared by sol-gel process. Mater Lett 59:197–200

    Article  CAS  Google Scholar 

  35. Shen X, Liu M, Song F (2010) Structure evolution and magnetic properties of SrFe12O19 nanofibers by electrospinning. J Sol-Gel Sci Techn 53:448–453

    Article  CAS  Google Scholar 

  36. Cheng Y, Zhao Y, Zhang Y et al (2010) Preparation of SrAl2O4: Eu2+, Dy3+ fibers by electrospinning combined with sol-gel process. J Colloid Interf Sci 344:321–326

    Article  CAS  Google Scholar 

  37. Montana S, Santi M (2009) Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Appl Phys A 97:167–177

    Article  Google Scholar 

  38. Yamaguchi O, Morimi M, Kawabata H et al (1987) Formation and transformation of ZnTiO3. J Am Ceram Soc 70:C97–C98

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Hebei Natural Science Foundation of China (No. E2011506001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongying Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Z., Song, J., Li, J. et al. Synthesis and characterization of zinc titanate fibers by sol-electrospinning method. J Sol-Gel Sci Technol 61, 49–55 (2012). https://doi.org/10.1007/s10971-011-2589-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2589-2

Keywords

Navigation