Skip to main content
Log in

Hybrid organic–inorganic sol–gel materials for micro and nanofabrication

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this review hybrid organic–inorganic (HOI) resists as emerging materials alternative to organic polymers for micro and nanolithography are presented and discussed. In particular, results on sol–gel materials belonging to 3-glycidoxypropyltrimethoxysilane based HOI are presented and reviewed, highlighting as various lithographic techniques can be used to pattern their surface and showing examples of micro- and nano-patterned structures achieved with radiation assisted lithography (UV, X-rays and electron beam) or imprint techniques. It will be demonstrated the particular versatility shown by some of these materials, that in some case can be processed with all the lithographic methods herein considered, without any significant modification of their main composition and synthesis procedure. Moreover, results about the investigation of interaction between radiation and HOI materials and thermal treatment will be discussed, as well as possible synthesis strategies and composition modification developed in order to improve efficiency of curing, tailor HOI properties to specific needs (optical properties, resist composition, mechanical stability, etc.) and explore innovative and non conventional patterning techniques. The reported results highlight as these novel materials, thanks to their solution processability and higher performances respect to commercial polymeric resists, allow to use the above mentioned lithographic techniques in a direct patterning process, strongly simplifying conventional technique and reducing their processing time and costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Lebeau B, Innocenzi P (2011) Chem Soc Rev 40(2):886–906

    Article  CAS  Google Scholar 

  2. Copuroglu M, O’Brien SM, Crean G (2006) Polym Degrad Stab 91:3185–3190

    Article  CAS  Google Scholar 

  3. Passinger S, Saifullah MSM, Reinhardt C, Subramanian KRV, Chichkov BN, Welland ME (2007) Adv Mater 19:1218–1221

    Article  CAS  Google Scholar 

  4. Briche S, Riassetto D, Gastaldin C, Lamarle C, Dellea O, Jamon D, Pernot E, Labeau M, Ravel G, Langlet M (2008) J Mater Sci 43:5809–5822

    Article  CAS  Google Scholar 

  5. Prosposito P, Casalboni M, Orsini E, Palazzesi C, Stella F (2010) Solid State Sci 12:1886–1889

    Article  CAS  Google Scholar 

  6. Fukushima M, Yanagi H, Hayashi S, Suganuma N, Taniguchi Y (2003) Thin Solid Films 438/439:39–43

    Article  Google Scholar 

  7. Obi S, Gale MT, Kuoni A, De Rooij N (2004) Microelectron Eng 73/74:157–160

    Article  Google Scholar 

  8. Saifullah MSM, Dae-Joon Kang, Subramanian KRV, Welland ME (2004) J Sol-Gel Sci Technol 29:5–10

    Article  CAS  Google Scholar 

  9. Cheong WC, Yuan XC, Koudriacho V, Yu WX (2002) Opt Express 10(14):586

    CAS  Google Scholar 

  10. Grigorescu AE, Hagen CW (2009) Nanotechnology 20:29

    Article  Google Scholar 

  11. Di Fabrizio E, Romanato F, Cabrini S, Kumar R, Perennes F, Altissimo M, Businaro L, Cojac D, Vaccari L, Prasciolu M, Candeloro P (2004) J Phys 16:33

    Google Scholar 

  12. Liang X, Morton KJ, Austin RH, Chou SY (2007) Nano Lett 7(12):3775

    Google Scholar 

  13. Rao J, Winfield R, Keeney L (2010) Opt Commun 283:2446–2450

    Article  CAS  Google Scholar 

  14. Escarré J, Soderstrom K, Battaglia C, Haug FJ, Ballif C (2011) Sol Energy Mater Sol Cells 95:881–886

    Article  Google Scholar 

  15. Kim KD, Jeong JH, Park SH, Choi DG, Choi JH, Lee ES (2009) Microelectron Eng 86:1983–1988

    Article  CAS  Google Scholar 

  16. Buestrich R, Kahlenberg F, Popall M, Dannberg P, Muller-Fiedler R, Rosch O (2001) J Sol–gel Sci Technol 20:181–186

    Article  CAS  Google Scholar 

  17. Moujoud A, Saddiki Z, Touam T, Najafi SI (2002) Thin Solid Films 422:161–165

    Article  CAS  Google Scholar 

  18. Etienne P, Coudray P, Porque J, Moreau Y (2000) Opt Commun 174:413

    Article  CAS  Google Scholar 

  19. Jung JI, Park OH, Bae BS (2003) J Sol-Gel Sci Technol 26:897–901

    Article  CAS  Google Scholar 

  20. Coudray P, Etienne P, Moreau Y (2000) Mat Sci In Smicnd Proc 3:331–337

    Article  CAS  Google Scholar 

  21. Popall M, Buestrich R, Kahlenberg F, Andersson A (2000) Mater Res Soc Symp Proc 621:CC9.4.1–CC9.4.12

    Google Scholar 

  22. Le Guevel X, Palazzesi C, Proposito P, Della Giustina G, Brusatin G (2008) J Mater Chem 18:3556–3562

    Article  CAS  Google Scholar 

  23. Jabbour J, Calas-Etienne S, Smaıhi M, Gatti S, Kribich R, Pille G, Moreau Y, Etienne P (2007) Appl Surf Sci 253:8032–8036

    Article  CAS  Google Scholar 

  24. O’Brien S, Copuroglu M, Crean GM (2007) Appl Surf Sci 253:7969–7972

    Article  Google Scholar 

  25. Croutxe-Barghorn C, Belon C, Chemtob A (2010) J Photopol Sci Technol 23(1):129–134

    Article  CAS  Google Scholar 

  26. Que W, Jia CY, Sun M, Sun Z, Wang LL, Zhang ZJ (2008) Opt Express 16(6):3490–3495

    Article  CAS  Google Scholar 

  27. Binh NT, Thanh NT, Trung DT, Huong NT, Minh LQ (2008) J Korean Phys Soc 52(5):1501–1505

    Article  CAS  Google Scholar 

  28. Luo X, ZHA C, Luther-Davies B (2005) Opt Mater 27:1461–1466

    Article  CAS  Google Scholar 

  29. Que W, Hu X, Zhang QY (2003) Chem Phys Lett 369:354–360

    Article  CAS  Google Scholar 

  30. Oubaha M, Copperwhite R, Murphy B, Kolodziejczyk B, Barry H, O’Dwyer K, MacCraith BD (2006) Thin Solid Films 510:334–338

    Article  CAS  Google Scholar 

  31. Segawa H, Yamaguchi S, Yamazaki Y, Yano T, Shibata S, Misawa H (2006) Appl Phys A 83:447–451

    Article  CAS  Google Scholar 

  32. Segawa H, Tateishi K, Arai Y, Yoshida K, Kaji H (2004) Thin Solid Films 466:48–53

    Article  CAS  Google Scholar 

  33. Saifullah MSM, Subramanian KRV, Tapley E, Kang D-J, Welland ME, Butler M (2003) Nano Lett 3(11):1587–1591

    Article  CAS  Google Scholar 

  34. Della Giustina G, Prasciolu M, Brusatin G, Guglielmi M, Romanato F (2009) Microelectron Eng 86:745–748

    Article  CAS  Google Scholar 

  35. Brigo L, Pistore A, Grenci G, Carpentiero A, Romanato F, Brusatin G (2010) Microelectron Eng 87:947–950

    Article  CAS  Google Scholar 

  36. Falcaro P, Malfatti L, Vaccai L, Amenitsch H, Marmiroli B, Grenci G, Innocenzi P (2009) Adv Mater 21:4932–4936

    Article  CAS  Google Scholar 

  37. Brusatin G, Della Giustina G, Romanato F, Guglielmi G (2008) Nanotechnology 19:175306

    Article  Google Scholar 

  38. Park HH (2011) Microelectron Eng 88:923–928

    Article  CAS  Google Scholar 

  39. Peroz C, Chauveau V, Barthel E, Søndergard E (2009) Adv Mater 21:555–558

    Article  CAS  Google Scholar 

  40. Lee TY, Guymon CA, Sonny Jonsson E, Hoyle CE (2004) Polymer 45:6155–6162

    Article  CAS  Google Scholar 

  41. Srinivasan S, Lee MW, Grady MC, Soroush M, Rappe AM (2010) J Phys Chem A 114:7975–7983

    Article  CAS  Google Scholar 

  42. Della Giustina G, Brusatin G, Guglielmi M, Palazzesi C, Orsini E, Prosposito P (2010) Solid State Sci 12:1890–1893

    Article  CAS  Google Scholar 

  43. Crivello JV, Lam JHW (1980) J Polym Sci Polym Chem Ed 18:2697–2714

    Article  CAS  Google Scholar 

  44. Della Giustina G, Brusatin G, Guglielmi M, Palazzesi C, Orsini E, Proposito P (2010) Solid State Sci 12:1890–1893

    Article  CAS  Google Scholar 

  45. Della Giustina G, Brusatin G, Guglielmi M, Romanato F (2007) Mater Sci Eng C 27:1382–1385

    Article  CAS  Google Scholar 

  46. Brusatin G, Della Giustina G, Guglielmi M, Innocenzi P (2006) Prog Solid State Chem 34:223–229

    Article  CAS  Google Scholar 

  47. Guglielmi M, Brusatin G, Della Giustina GJ (2007) Non-Cryst Solids 353:1681–1687

    Article  CAS  Google Scholar 

  48. Della Giustina G, Zacco G, Zanchetta E, Guglielmi M, Romanato F, Brusatin G (2011) Microelectron Eng 88:1923–1926

  49. Buso D, Della Giustina G, Brusatin G, Guglielmi M, Martucci A, Chiasera A, Ferrari M, Romanato F (2009) J Nanosci Nanotechnol 9:1858–1864

    Article  CAS  Google Scholar 

  50. Della Giustina G, Guglielmi M, Brusatin G, Prasciolu M, Romanato F (2008) J Sol-Gel Sci Technol 48:212–216

    Article  CAS  Google Scholar 

  51. Patsis GP, Glezos N (1999) Microelectron Eng 46:359–363

    Article  CAS  Google Scholar 

  52. Foucher J, Pikon A, Andes C, Thackeray J (2007) Proc SPIE 6518:65181Q

    Article  Google Scholar 

  53. Balslev S, Romanato F (2005) J Vac Sci Technol B 23(6):1

    Article  Google Scholar 

  54. Chou SY, Krauss PR, Renstrom PJ (1995) Appl Phys Lett 67:3114–3116

    Article  CAS  Google Scholar 

  55. Chou SY, Krauss PR, Renstrom PJ (1996) Science 272:85–87

    Article  CAS  Google Scholar 

  56. Schmitt H, Rommel M, Bauer AJ, Frey L, Bich A, Eisner M, Voelkel R, Hornung M (2010) Microelectron Eng 87:1074–1076

    Article  CAS  Google Scholar 

  57. Ahn AH, Guo LJ (2009) ACS Nano 3(8):2304–2310

    Article  CAS  Google Scholar 

  58. Pozzato A, Dal Zilio S, Fois G, Vendramin D, Mistura G, Belotti M, Chen Y, Natali M (2006) Microelectron Eng 83:884–888

    Article  CAS  Google Scholar 

  59. Kim WS, Kim KS, Eo YJ, Yoon KB, Bae BS (2005) J Mater Chem 15:465–469

    Article  CAS  Google Scholar 

  60. Letailleur A, Teisseire J, Chemin N, Barthel E, Søndergard E (2010) Chem Mater 22:3143–3151

    Article  CAS  Google Scholar 

  61. Gale MT, Gimkiewicz C, Obi S, Schnieper M, Sochtig J, Thiele H, Westenhofer S (2005) Opt Lasers Eng 43:373–386

    Article  Google Scholar 

  62. Fortunati I, Gardin S, Todescato F, Signorini R, Bozio R, Jasieniak JJ, Martucci A, Pistore A, Guglielmi M, Prasciolu M, Romanato F (2010) Nonlinear Opt Quantum Opt 41(1):73–86

    Google Scholar 

  63. Ye C, Wong KJ, He Y, Wang X (2006) Opt Express 15(3):936

    Article  Google Scholar 

  64. Pisignano D, Persano L, Mele E, Visconti P, Anni M, Gigli G, Cingolani R, Favaretto L, Barbarella G (2005) Synth Met 153:237–240

    Article  CAS  Google Scholar 

  65. Dal Zilio S, Della Giustina G, Brusatin G, Tormen M (2010) Microelectron Eng 87:1143–1146

    Article  CAS  Google Scholar 

  66. Versace DL, Oubaha M, Copperwhite R, Croutxé-Barghorn C, MacCraith BD (2008) Thin Solid Film 516:6448

    Article  CAS  Google Scholar 

  67. Sato N, Nagayama M, Yokoyama Q (2003) J Photopolym Sci Technol 16:679

    Article  CAS  Google Scholar 

  68. Goetzberger A, Goldschmidt JC, Peters M, Löper P (2008) Sol Energy Mater Sol Cells 92(12):1570–1578

    Article  CAS  Google Scholar 

  69. Dal Zilio S, Tvingstedt K, Inganäs O, Tormen M (2009) Microelectron Eng 86(4–6):1150–1154

    Article  CAS  Google Scholar 

  70. Tohge N, Hasegawa M, Noma N, Kintaka K, Nishii J (2003) J Sol-Gel Sci Technol 26:903–907

    Article  CAS  Google Scholar 

  71. Li X, Du X, He J (2010) Langmuir 26(16):13528–13534

    Article  CAS  Google Scholar 

  72. Zhang X, Ye H, Xiao B, Yan L, Lv H, Jiang B (2010) J Phys Chem C 114(47):19979–19983

    Article  CAS  Google Scholar 

  73. Chen D (2001) Sol Energy Mater Sol Cells 68:313–336

    Article  CAS  Google Scholar 

  74. Chhajed S, Schubert MF, Kim JK, Schuber EF (2008) Appl Phys Lett 93:101914

    Article  Google Scholar 

  75. Faustini M, Nicole L, Boissiere C, Innocenzi P, Sanchez C, Grosso D (2010) Chem Mater 22:4406–4413

    Article  CAS  Google Scholar 

  76. Gardin S, Signorini R, Pistore A, Della Giustina G, Brusatin G, Guglielmi M, Bozio R (2010) J Phys Chem C 114:7646–7652

    Article  CAS  Google Scholar 

  77. Gardin S, Della Giustina G, Brusatin G, Signorini R (2011) J Nanosci Nanotechnol 11(1):195–199

    Article  CAS  Google Scholar 

  78. Park HH et al (2010) J Mater Chem 20:1921–1926

    Article  CAS  Google Scholar 

  79. Yu W, Yuan X-C (2004) J Mater Chem 14:821–823

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the University of Padova through the PLATFORMS strategic project “PLAsmonic nano-Textured materials and architectures FOR enhanced Molecular Sensing”—prot. STPD089KSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Brusatin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brusatin, G., Della Giustina, G. Hybrid organic–inorganic sol–gel materials for micro and nanofabrication. J Sol-Gel Sci Technol 60, 299–314 (2011). https://doi.org/10.1007/s10971-011-2562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2562-0

Keywords

Navigation