Skip to main content

Poly(ferrocenylsilanes) with Controlled Macromolecular Architecture by Anionic Polymerization: Applications in Patterning and Lithography

  • Chapter
Anionic Polymerization

Abstract

In this chapter, the versatility of poly(ferrocenylsilanes) (PFSs) as resists in reactive ion etching (RIE) for nanofabrication is presented. PFSs, belonging to the class of organometallic polymers, possess skeletal ferrocene and alkylsilane units which provide these solution-processable materials with a very high RIE resistance. First, it is shown that among the different paths for synthesizing PFS, anionic polymerization creates an opportunity to produce well-defined PFSs with a targeted molar mass and low polydispersity. Block copolymers and more complex structures can also be realized, which leads to exciting openings in maskless self-assembly lithography for nanopatterning. Then, optimization of the etching process, aimed at maximizing aspect ratios for PFS-based resists, is discussed. Next, several micro- and nanofabrication processes, using PFS homopolymers to fabricate nanoscale structures, are demonstrated. Finally, phase separation of PFS block copolymers and their use as self-assembled resists with long-range guided order in nanolithography is discussed. With this technique, various nanopatterns useful for CMOS design could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wanlass FM (1967) Low stand-by power complementary field effect circuitry. United States Patent US 3356858 A

    Google Scholar 

  2. Baker RJ (2011) CMOS: circuit design, layout, and simulation. John Wiley & Sons, Inc., hoboken, New Jersey

    Google Scholar 

  3. Haron NZ, Hamdioui S (2008) Why is CMOS scaling coming to an END? In: Design and Test Workshop, 2008. IDT 2008. 3rd International, 20–22 Dec 2008, pp 98–103. doi:10.1109/IDT.2008.4802475

  4. Kusumoto S, Shima M, Wang Y, Shimokawa T, Sato H, Hieda K (2006) Advanced materials for 193 nm immersion lithography. Polymer Adv Tech 17(2):122–130. doi:10.1002/pat.677

    CAS  Google Scholar 

  5. Hori M, Nagai T, Nakamura A, Abe T, Wakamatsu G, Kakizawa T, Anno Y, Sugiura M, Kusumoto S, Yamaguchi Y, Shimokawa T (2008) Sub-40-nm half-pitch double patterning with resist freezing process. 69230H-69230H. doi:10.1117/12.772403

  6. Pease RF, Chou SY (2008) Lithography and other patterning techniques for future electronics. Proc IEEE 96(2):248–270. doi:10.1109/JPROC.2007.911853

    CAS  Google Scholar 

  7. Acikgoz C, Hempenius MA, Huskens J, Vancso GJ (2011) Polymers in conventional and alternative lithography for the fabrication of nanostructures. Eur Polym J 47(11):2033–2052. http://dx.doi.org/10.1016/j.eurpolymj.2011.07.025

  8. Kaufmann T, Ravoo BJ (2010) Stamps, inks and substrates: polymers in microcontact printing. Polym Chem 1(4):371–387. doi:10.1039/B9PY00281B

    CAS  Google Scholar 

  9. Hadjichristidis N, Pispas S, Floudas G (2003) Block copolymers: synthetic strategies, physical properties, and applications. John Wiley & Sons, Inc., hoboken, New Jersey

    Google Scholar 

  10. Hamley IW (2004) Developments in block copolymer science and technology. Wiley, Chichester

    Google Scholar 

  11. ERM Team (2007) International Technology Roadmap for Semiconductors: Emerging Research Materials, 2007 Edition. http://www.itrs.net/reports.html

  12. Stoykovich MP, Nealey PF (2006) Block copolymers and conventional lithography. Mater Today 9(9):20–29. http://dx.doi.org/10.1016/S1369-7021(06)71619-4

  13. Stoykovich MP, Müller M, Kim SO, Solak HH, Edwards EW, de Pablo JJ, Nealey PF (2005) Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308(5727):1442–1446. doi:10.1126/science.1111041

    CAS  Google Scholar 

  14. Chi L (2010) Nanotechnology: volume 8: nanostructured surfaces. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  15. Nunns A, Gwyther J, Manners I (2013) Inorganic block copolymer lithography. Polymer 54(4):1269–1284. http://dx.doi.org/10.1016/j.polymer.2012.11.057

  16. Rosenberg H, Rausch MD (1962) Silicon-containing dicyclopentadienylmetal compounds and polymers and methods for preparing same. US Patent 3060215

    Google Scholar 

  17. Foucher DA, Tang BZ, Manners I (1992) Ring-opening polymerization of strained, ring-tilted ferrocenophanes: a route to high-molecular-weight poly(ferrocenylsilanes). J Am Chem Soc 114(15):6246–6248. doi:10.1021/ja00041a053

    CAS  Google Scholar 

  18. Fossum E, Matyjaszewski K, Rulkens R, Manners I (1995) Polysilane-Poly(ferrocenylsilane) random copolymers. Macromolecules 28(1):401–402. doi:10.1021/ma00105a061

    CAS  Google Scholar 

  19. Gómez-Elipe P, Macdonald PM, Manners I (1997) Architectural control in the transition-metal-catalyzed ring-opening polymerization of silicon-bridged [1]ferrocenophanes. Angew Chem Int Ed Engl 36(7):762–764. doi:10.1002/anie.199707621

    Google Scholar 

  20. Ni Y, Rulkens R, Pudelski JK, Manners I (1995) Transition metal catalyzed ring-opening polymerization of silicon-bridged [1]ferrocenophanes at ambient temperature. Macromol Rapid Commun 16(9):637–641. doi:10.1002/marc.1995.030160901

    CAS  Google Scholar 

  21. Gómez-Elipe P, Resendes R, Macdonald PM, Manners I (1998) Transition metal catalyzed ring-opening polymerization (ROP) of silicon-bridged [1]ferrocenophanes: facile molecular weight control and the remarkably convenient synthesis of poly(ferrocenes) with regioregular, comb, star, and block architectures. J Am Chem Soc 120(33):8348–8356. doi:10.1021/ja981429h

    Google Scholar 

  22. Rulkens R, Lough AJ, Manners I (1994) Anionic ring-opening oligomerization and polymerization of silicon-bridged [1]ferrocenophanes: characterization of short-chain models for poly(ferrocenylsilane) high polymers. J Am Chem Soc 116(2):797–798. doi:10.1021/ja00081a062

    CAS  Google Scholar 

  23. Tanabe M, Manners I (2004) Photolytic living anionic ring-opening polymerization (ROP) of silicon-bridged [1]ferrocenophanes via an iron-cyclopentadienyl bond cleavage mechanism. J Am Chem Soc 126(37):11434–11435. doi:10.1021/ja046657s

    CAS  Google Scholar 

  24. Rasburn J, Petersen R, Jahr R, Rulkens R, Manners I, Vancso GJ (1995) Solid-state synthesis and morphology of poly(ferrocenyldimethylsilane). Chem Mater 7(5):871–877. doi:10.1021/cm00053a010

    CAS  Google Scholar 

  25. Korczagin I, Lammertink RH, Hempenius M, Golze S, Vancso GJ (2006) Surface nano- and microstructuring with organometallic polymers. In: Vancso GJ (ed) Ordered polymeric nanostructures at surfaces, vol 200. Advances in polymer science. Springer, Berlin Heidelberg, pp 91–117. doi:10.1007/12_038

  26. Nelson JM, Rengel H, Manners I (1993) Ring-opening polymerization of [2]ferrocenophanes with a hydrocarbon bridge: synthesis of poly(ferrocenylethylenes). J Am Chem Soc 115(15):7035–7036. doi:10.1021/ja00068a096

    CAS  Google Scholar 

  27. Nelson JM, Lough AJ, Manners I (1994) Synthesis and ring-opening polymerization of highly strained, ring-tilted [2]ruthenocenophanes. Angew Chem Int Ed Engl 33(9):989–991. doi:10.1002/anie.199409891

    Google Scholar 

  28. Gallei M, Schmidt BVKJ, Klein R, Rehahn M (2009) Defined poly[styrene-block-(ferrocenylmethyl methacrylate)] diblock copolymers via living anionic polymerization. Macromol Rapid Commun 30(17):1463–1469. doi:10.1002/marc.200900177

    CAS  Google Scholar 

  29. Foucher D, Ziembinski R, Petersen R, Pudelski J, Edwards M, Ni Y, Massey J, Jaeger CR, Vancso GJ, Manners I (1994) Synthesis, characterization, and properties of high molecular weight unsymmetrically substituted poly(ferrocenylsilanes). Macromolecules 27(14):3992–3999. doi:10.1021/ma00092a046

    CAS  Google Scholar 

  30. Foucher DA, Ziembinski R, Tang BZ, Macdonald PM, Massey J, Jaeger CR, Vancso GJ, Manners I (1993) Synthesis, characterization, glass transition behavior, and the electronic structure of high-molecular-weight, symmetrically substituted poly(ferrocenylsilanes) with alkyl or aryl side groups. Macromolecules 26(11):2878–2884. doi:10.1021/ma00063a037

    CAS  Google Scholar 

  31. Manners I (2003) Polymer science with main group elements and transition metals. Macromol Symp 196(1):57–62. doi:10.1002/masy.200390176

    CAS  Google Scholar 

  32. Kulbaba K, Manners I (2001) Polyferrocenylsilanes: metal-containing polymers for materials science, self-assembly and nanostructure applications. Macromol Rapid Commun 22(10):711–724. doi:10.1002/1521-3927(20010701)22:10<711::AID-MARC711>3.0.CO;2-C

    CAS  Google Scholar 

  33. Manners I (1999) Poly(ferrocenylsilanes): novel organometallic plastics. Chem Commun 1999(10):857–865. doi:10.1039/A810043H

  34. Hempenius MA, Brito FF, Vancso GJ (2003) Synthesis and characterization of anionic and cationic poly(ferrocenylsilane) polyelectrolytes. Macromolecules 36(17):6683–6688. doi:10.1021/ma034432g

    CAS  Google Scholar 

  35. Wang Z, Lough A, Manners I (2002) Synthesis and characterization of water-soluble cationic and anionic polyferrocenylsilane polyelectrolytes. Macromolecules 35(20):7669–7677. doi:10.1021/ma0203694

    CAS  Google Scholar 

  36. Hempenius MA, Vancso GJ (2002) Synthesis of a polyanionic water-soluble poly(ferrocenylsilane). Macromolecules 35(7):2445–2447. doi:10.1021/ma0119629

    CAS  Google Scholar 

  37. Hempenius MA, Robins NS, Lammertink RGH, Vancso GJ (2001) Organometallic polyelectrolytes: synthesis, characterization and layer-by-layer deposition of cationic poly(ferrocenyl(3-ammoniumpropyl)-methylsilane). Macromol Rapid Commun 22(1):30–33. doi:10.1002/1521-3927(20010101)22:1<30::AID-MARC30>3.0.CO;2-J

    CAS  Google Scholar 

  38. Power-Billard KN, Manners I (1999) Hydrophilic and water-soluble poly(ferrocenylsilanes). Macromolecules 33(1):26–31. doi:10.1021/ma991350c

    Google Scholar 

  39. Ginzburg M, Galloro J, Jäkle F, Power-Billard KN, Yang S, Sokolov I, Lam CNC, Neumann AW, Manners I, Ozin GA (2000) Layer-by-layer self-assembly of organic − organometallic polymer electrostatic superlattices using poly(ferrocenylsilanes). Langmuir 16(24):9609–9614. doi:10.1021/la0012283

    CAS  Google Scholar 

  40. Wurm F, Hilf S, Frey H (2009) Electroactive linear–hyperbranched block copolymers based on linear poly(ferrocenylsilane)s and hyperbranched poly(carbosilane)s. Chem Eur J 15(36):9068–9077. doi:10.1002/chem.200900666

    CAS  Google Scholar 

  41. Sui X, van Ingen L, Hempenius MA, Vancso GJ (2010) Preparation of a rapidly forming poly(ferrocenylsilane)-poly(ethylene glycol)-based hydrogel by a Thiol-Michael addition click reaction. Macromol Rapid Commun 31(23):2059–2063. doi:10.1002/marc.201000420

    CAS  Google Scholar 

  42. Sui X, Feng X, Song J, Hempenius MA, Vancso GJ (2012) Electrochemical sensing by surface-immobilized poly(ferrocenylsilane) grafts. J Mater Chem 22(22):11261–11267. doi:10.1039/C2JM30599B

    CAS  Google Scholar 

  43. Rulkens R, Ni Y, Manners I (1994) Living anionic ring-opening polymerization of silicon-bridged [1]ferrocenophanes: synthesis and characterization of poly(ferrocenylsilane)-polysiloxane block copolymers. J Am Chem Soc 116(26):12121–12122. doi:10.1021/ja00105a090

    CAS  Google Scholar 

  44. Ni Y, Rulkens R, Manners I (1996) Transition metal-based polymers with controlled architectures: well-defined poly(ferrocenylsilane) homopolymers and multiblock copolymers via the living anionic ring-opening polymerization of silicon-bridged [1]ferrocenophanes. J Am Chem Soc 118(17):4102–4114. doi:10.1021/ja953805t

    CAS  Google Scholar 

  45. Zhang M, Rupar PA, Feng C, Lin K, Lunn DJ, Oliver A, Nunns A, Whittell GR, Manners I, Winnik MA (2013) Modular synthesis of polyferrocenylsilane block copolymers by Cu-Catalyzed Alkyne/Azide “Click” Reactions. Macromolecules 46(4):1296–1304. doi:10.1021/ma302054q

    CAS  Google Scholar 

  46. Resendes R, Massey J, Dorn H, Winnik MA, Manners I (1999) A convenient, transition metal-catalyzed route to water-soluble amphiphilic organometallic block copolymers: synthesis and aqueous self-assembly of poly(ethylene oxide)-block-poly(ferrocenylsilane). Macromolecules 33(1):8–10. doi:10.1021/ma991450i

    Google Scholar 

  47. Lammertink RGH, Hempenius MA, van den Enk JE, Chan VZH, Thomas EL, Vancso GJ (2000) Nanostructured thin films of organic–organometallic block copolymers: one-step lithography with poly(ferrocenylsilanes) by reactive ion etching. Adv Mater 12(2):98–103. doi:10.1002/(sici)1521-4095(200001)12:2<98::aid-adma98>3.0.co;2-5

    CAS  Google Scholar 

  48. Wang XS, Winnik MA, Manners I (2002) Synthesis and solution self-assembly of coil − crystalline − coil polyferrocenylphosphine-b-polyferrocenylsilane-b-polysiloxane triblock copolymers. Macromolecules 35(24):9146–9150. doi:10.1021/ma020564i

    CAS  Google Scholar 

  49. Kloninger C, Rehahn M (2004) 1,1-dimethylsilacyclobutane-mediated living anionic block copolymerization of [1]dimethylsilaferrocenophane and methyl methacrylate. Macromolecules 37(5):1720–1727. doi:10.1021/ma034909o

    CAS  Google Scholar 

  50. Korczagin I, Hempenius MA, Vancso GJ (2004) Poly(ferrocenylsilane-block-methacrylates) via sequential anionic and atom transfer radical polymerization. Macromolecules 37(5):1686–1690. doi:10.1021/ma0358172

    CAS  Google Scholar 

  51. Kim KT, Vandermeulen GWM, Winnik MA, Manners I (2005) Organometallic − polypeptide block copolymers: synthesis and properties of poly(ferrocenyldimethylsilane)-b-poly- (γ-benzyl-l-glutamate). Macromolecules 38(12):4958–4961. doi:10.1021/ma050336z

    CAS  Google Scholar 

  52. Vandermeulen GWM, Kim KT, Wang Z, Manners I (2006) Metallopolymer − peptide conjugates: synthesis and self-assembly of polyferrocenylsilane graft and block copolymers containing a β-sheet forming Gly-Ala-Gly-Ala tetrapeptide segment. Biomacromolecules 7(4):1005–1010. doi:10.1021/bm050732p

    CAS  Google Scholar 

  53. Wang Y, Zou S, Kim KT, Manners I, Winnik MA (2008) Organometallic–polypeptide block copolymers: synthesis and self-assembly of poly(ferrocenyldimethylsilane)-b-poly(ε-benzyloxycarbonyl-L-lysine). Chem Eur J 14(28):8624–8631. doi:10.1002/chem.200800762

    CAS  Google Scholar 

  54. Roerdink M, van Zanten TS, Hempenius MA, Zhong Z, Feijen J, Vancso GJ (2007) Poly(ferrocenylsilane)-block-polylactide block copolymers. Macromol Rapid Commun 28(22):2125–2130. doi:10.1002/marc.200700364

    CAS  Google Scholar 

  55. Soto AP, Manners I (2008) Poly(ferrocenylsilane-b-polyphosphazene) (PFS-b-PP): a new class of organometallic − inorganic block copolymers. Macromolecules 42(1):40–42. doi:10.1021/ma8016713

    Google Scholar 

  56. Smith GS, Patra SK, Vanderark L, Saithong S, Charmant JPH, Manners I (2010) Photocontrolled living anionic polymerization of silicon-bridged [1]ferrocenophanes with fluorinated substituents: synthesis and characterization of fluorinated polyferrocenylsilane (PFS) homopolymers and block copolymers. Macromol Chem Phys 211(3):303–312. doi:10.1002/macp.200900395

    CAS  Google Scholar 

  57. Gilroy JB, Patra SK, Mitchels JM, Winnik MA, Manners I (2011) Main-chain heterobimetallic block copolymers: synthesis and self-assembly of polyferrocenylsilane-b-poly(cobaltoceniumethylene). Angew Chem Int Ed 50(26):5851–5855. doi:10.1002/anie.201008184

    CAS  Google Scholar 

  58. Tanabe M, Vandermeulen GWM, Chan WY, Cyr PW, Vanderark L, Rider DA, Manners I (2006) Photocontrolled living polymerizations. Nat Mater 5(6):467–470. http://www.nature.com/nmat/journal/v5/n6/suppinfo/nmat1649_S1.html

  59. Rider DA, Manners I (2007) Synthesis, self-assembly, and applications of polyferrocenylsilane block copolymers. Polym Rev 47(2):165–195

    CAS  Google Scholar 

  60. Datta U, Rehahn M (2004) Synthesis and self-assembly of styrene–[1]dimethylsilaferrocenophane–methyl methacrylate pentablock copolymers. Macromol Rapid Commun 25(18):1615–1622. doi:10.1002/marc.200400241

    CAS  Google Scholar 

  61. Kim KT, Han J, Ryu CY, Sun FC, Sheiko SS, Winnik MA, Manners I (2006) Synthesis, characterization, and AFM studies of dendronized polyferrocenylsilanes. Macromolecules 39(23):7922–7930. doi:10.1021/ma060607l

    CAS  Google Scholar 

  62. Nunns A, Ross CA, Manners I (2013) Synthesis and bulk self-assembly of ABC star terpolymers with a polyferrocenylsilane metalloblock. Macromolecules 46(7):2628–2635. doi:10.1021/ma302602u

    CAS  Google Scholar 

  63. d’Agostino R (1990) Plasma deposition, treatment, and etching of polymers. Ed. Academic Press, INC., London

    Google Scholar 

  64. Manos DM, Flamm DL (1989) Plasma etching: an introduction. Academic, Boston

    Google Scholar 

  65. van Roosmalen AJ, Baggerman JAG, Brader SJH (1991) Dry etching for VLSI. Springer Science+Business Media, New York

    Google Scholar 

  66. Flamm D, Donnelly V (1981) The design of plasma etchants. Plasma Chem Plasma Process 1(4):317–363. doi:10.1007/BF00565992

    CAS  Google Scholar 

  67. Lammertink RGH, Hempenius MA, Chan VZH, Thomas EL, Vancso GJ (2001) Poly(ferrocenyldimethylsilanes) for reactive ion etch barrier applications. Chem Mater 13(2):429–434. doi:10.1021/cm001052q

    CAS  Google Scholar 

  68. Knizikevičius R, Galdikas A, Grigonis A (2002) Real dimensional simulation of anisotropic etching of silicon in CF4 + O2 plasma. Vacuum 66(1):39–47. http://dx.doi.org/10.1016/S0042-207X(01)00418-3

  69. Kokkoris G, Gogolides E, Boudouvis AG (2002) Etching of SiO[sub 2] features in fluorocarbon plasmas: explanation and prediction of gas-phase-composition effects on aspect ratio dependent phenomena in trenches. J Appl Phys 91(5):2697–2707

    CAS  Google Scholar 

  70. Henri J, Han G, de Meint B, Miko E, Jan F (1996) A survey on the reactive ion etching of silicon in microtechnology. J Micromech Microeng 6(1):14

    Google Scholar 

  71. Oehrlein GS, Williams HL (1987) Silicon etching mechanisms in a CF[sub 4]/H[sub 2] glow discharge. J Appl Phys 62(2):662–672

    CAS  Google Scholar 

  72. Coburn JW, Kay E (1979) Some chemical aspects of the fluorocarbon plasma etching of silicon and its compounds. Solid State Technol 22(4):117–124

    Google Scholar 

  73. Strobel M, Corn S, Lyons CS, Korba GA (1987) Plasma fluorination of polyolefins. J Polym Sci A Polym Chem 25(5):1295–1307. doi:10.1002/pola.1987.080250508

    CAS  Google Scholar 

  74. Mogab CJ, Adams AC, Flamm DL (1978) Plasma etching of Si and SiO[sub 2]–-the effect of oxygen additions to CF[sub 4] plasmas. J Appl Phys 49(7):3796–3803

    CAS  Google Scholar 

  75. Donnelly VM, Flamm DL, Dautremont-Smith WC, Werder DJ (1984) Anisotropic etching of SiO[sub 2] in low-frequency CF[sub 4]/O[sub 2] and NF[sub 3]/Ar plasmas. J Appl Phys 55(1):242–252

    CAS  Google Scholar 

  76. Egitto FD, Matienzo LJ, Schreyer HB (1992) Reactive ion etching of poly(tetrafluoroethylene) in O[sub 2]–CF[sub 4] plasmas. J Vac Sci Technol A (Vacuum, Surfaces, and Films) 10(5):3060–3064

    CAS  Google Scholar 

  77. Korczagin I, Golze S, Hempenius MA, Vancso GJ (2003) Surface micropatterning and lithography with poly(Ferrocenylmethylphenylsilane). Chem Mater 15(19):3663–3668. doi:10.1021/cm031024i

    CAS  Google Scholar 

  78. Legtenberg R, Jansen H, de Boer M, Elwenspoek M (1995) Anisotropic reactive ion etching of silicon using SF 6/O 2/CHF 3 gas mixtures. J Electrochem Soc 142(6):2020–2028. doi:10.1149/1.2044234

    CAS  Google Scholar 

  79. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37(5):550–575. doi:10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G

    CAS  Google Scholar 

  80. Kumar A, Whitesides GM (1993) Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink”' followed by chemical etching. Appl Phys Lett 63(14):2002–2004

    CAS  Google Scholar 

  81. Clarson SJ, Semlyen JA (1993) Siloxane polymers. PTR Prentice Hall, Englewood Cliffs

    Google Scholar 

  82. Donzel C, Geissler M, Bernard A, Wolf H, Michel B, Hilborn J, Delamarche E (2001) Hydrophilic poly(dimethylsiloxane) stamps for microcontact printing. Adv Mater 13(15):1164–1167. doi:10.1002/1521-4095(200108)13:15<1164::AID-ADMA1164>3.0.CO;2-S

    CAS  Google Scholar 

  83. Hillborg H, Gedde UW (1998) Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges. Polymer 39(10):1991–1998. http://dx.doi.org/10.1016/S0032-3861(97)00484-9

  84. Chua DBH, Ng HT, Li SFY (2000) Spontaneous formation of complex and ordered structures on oxygen-plasma-treated elastomeric polydimethylsiloxane. Appl Phys Lett 76(6):721–723

    CAS  Google Scholar 

  85. Lammertink RGH, Korczagin I, Hempenius MA, Vancso GJ (2003) Metal-containing polymers for high-performance resist applications. In: Macromolecules containing metal and metal-like elements. Wiley, pp 115–133. doi:10.1002/0471466573.ch7

  86. Bowden N, Brittain S, Evans A, Hutchinson J, Whitesides G (1998) Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393(6681):146–149. citeulike-article-id:2885101. doi:10.1038/30193

  87. Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254(2):306–315. http://dx.doi.org/10.1006/jcis.2002.8594

  88. Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett 67(21):3114. doi:10.1063/1.114851

    CAS  Google Scholar 

  89. Chou SY, Krauss PR, Renstrom PJ (1996) Imprint lithography with 25-nanometer resolution. Science 272(5258):85–87. doi:10.1126/science.272.5258.85

    CAS  Google Scholar 

  90. Bender M, Otto M, Hadam B, Vratzov B, Spangenberg B, Kurz H (2000) Fabrication of nanostructures using a UV-based imprint technique. Microelectron Eng 53(1):233–236. doi:10.1016/S0167-9317(00)00304-X

    CAS  Google Scholar 

  91. Colburn M, Johnson SC, Stewart MD, Damle S, Bailey TC, Choi B, Wedlake M, Michaelson TB, Sreenivasan SV, Ekerdt JG, Willson CG (1999) Step and flash imprint lithography: a new approach to high-resolution patterning. Proc SPIE 3676:379–389. doi:10.1117/12.351155

  92. Acikgoz C, Hempenius MA, Julius Vancso G, Huskens J (2009) Direct surface structuring of organometallic resists using nanoimprint lithography. Nanotechnology 20(13):135304. doi:10.1088/0957-4484/20/13/135304

    Google Scholar 

  93. Resnick DJ, Sreenivasan SV, Willson CG (2005) Step & flash imprint lithography. Mater Today 8(2):34–42. doi:10.1016/s1369-7021(05)00700-5

    CAS  Google Scholar 

  94. Acikgoz C, Ling XY, Phang IY, Hempenius MA, Reinhoudt DN, Huskens J, Vancso GJ (2009) Fabrication of freestanding nanoporous polyethersulfone membranes using organometallic polymer resists patterned by nanosphere lithography. Adv Mater 21(20):2064–2067. doi:10.1002/adma.200803647

    CAS  Google Scholar 

  95. Ling XY, Malaquin L, Reinhoudt DN, Wolf H, Huskens J (2007) An in situ study of the adsorption behavior of functionalized particles on self-assembled monolayers via different chemical interactions. Langmuir 23(20):9990–9999. doi:10.1021/la701671s

    CAS  Google Scholar 

  96. Leibler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13(6):1602–1617. doi:10.1021/ma60078a047

    CAS  Google Scholar 

  97. Sun Z, Wang CH (1995) Determination of Flory–Huggins interaction parameter and self-diffusion coefficients in ternary polymer solutions by quasielastic light scattering. J Chem Phys 103(9):3762–3766

    CAS  Google Scholar 

  98. Posharnowa N, Schneider A, Wunsch M, Kuleznew V, Wolf BA (2001) Polymer–polymer interaction parameters for homopolymers and copolymers from light scattering and phase separation experiments in a common solvent. J Chem Phys 115(20):9536–9546

    CAS  Google Scholar 

  99. Fukuda T, Nagata M, Inagaki H (1984) Light scattering from ternary solutions. 1. Dilute solutions of polystyrene and poly(methyl methacrylate). Macromolecules 17(4):548–553. doi:10.1021/ma00134a007

    CAS  Google Scholar 

  100. Nedoma AJ, Robertson ML, Wanakule NS, Balsara NP (2008) Measurements of the composition and molecular weight dependence of the Flory − Huggins interaction parameter. Macromolecules 41(15):5773–5779. doi:10.1021/ma800698r

    CAS  Google Scholar 

  101. Lee JH, Balsara NP, Chakraborty AK, Krishnamoorti R, Hammouda B (2002) Thermodynamics and phase behavior of block copolymer/homopolymer blends with attractive and repulsive interactions. Macromolecules 35(20):7748–7757. doi:10.1021/ma020361u

    CAS  Google Scholar 

  102. Lefebvre AA, Balsara NP, Lee JH, Vaidyanathan C (2002) Determination of the phase boundary of high molecular weight polymer blends. Macromolecules 35(20):7758–7764. doi:10.1021/ma020552x

    CAS  Google Scholar 

  103. Zirkel A, Gruner SM, Urban V, Thiyagarajan P (2002) Small-angle neutron scattering investigation of the Q-dependence of the Flory − Huggins interaction parameter in a binary polymer blend. Macromolecules 35(19):7375–7386. doi:10.1021/ma010576o

    CAS  Google Scholar 

  104. Ryu DY, Jeong U, Lee DH, Kim J, Youn HS, Kim JK (2003) Phase behavior of deuterated polystyrene-block-poly(n-pentyl methacrylate) copolymers. Macromolecules 36(8):2894–2902. doi:10.1021/ma026002g

    CAS  Google Scholar 

  105. Elbs H, Krausch G (2004) Ellipsometric determination of Flory-Huggins interaction parameters in solution. Polymer 45(23):7935–7942. http://dx.doi.org/10.1016/j.polymer.2004.09.021

  106. Marsac P, Li T, Taylor L (2009) Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res 26(1):139–151. doi:10.1007/s11095-008-9721-1

    CAS  Google Scholar 

  107. Bates FS, Fredrickson GH (1990) Block copolymer thermodynamics: theory and experiment. Ann Rev Phys Chem 41(1):525–557. doi:10.1146/annurev.pc.41.100190.002521

  108. Eitouni HB, Balsara NP, Hahn H, Pople JA, Hempenius MA (2002) Thermodynamic interactions in organometallic block copolymers: poly(styrene-block-ferrocenyldimethylsilane). Macromolecules 35(20):7765–7772. doi:10.1021/ma020647z

    CAS  Google Scholar 

  109. Xu J, Bellas V, Jungnickel B, Stühn B, Rehahn M (2010) A novel crystallization scheme in poly[styrene-block-(ferrocenyl dimethylsilane)] diblock copolymers. Macromol Chem Phys 211(21):2276–2285. doi:10.1002/macp.201000220

    CAS  Google Scholar 

  110. Rider DA, Cavicchi KA, Power-Billard KN, Russell TP, Manners I (2005) Diblock copolymers with amorphous atactic polyferrocenylsilane blocks: synthesis, characterization, and self-assembly of polystyrene-block-poly(ferrocenylethylmethylsilane) in the bulk state. Macromolecules 38(16):6931–6938. doi:10.1021/ma047410i

    CAS  Google Scholar 

  111. Gwyther J, Lotze G, Hamley I, Manners I (2011) Double-gyroid morphology of a polystyrene-block-poly(ferrocenylethylmethylsilane) diblock copolymer: a route to ordered bicontinuous nanoscale architectures. Macromol Chem Phys 212(2):198–201. doi:10.1002/macp.201000496

    CAS  Google Scholar 

  112. Gwyther J, Manners I (2009) Diblock copolymers with an amorphous, high glass transition temperature, organometallic block: synthesis, characterisation and self-assembly of polystyrene-b-poly(ferrocenylisopropylmethylsilane) in the bulk state. Polymer 50(23):5384–5389. http://dx.doi.org/10.1016/j.polymer.2009.08.041

  113. Yamauchi K, Hasegawa H, Hashimoto T, Köhler N, Knoll K (2002) Synthesis and morphological studies of polyisoprene-block-polystyrene-block-poly(vinyl methyl ether) triblock terpolymer. Polymer 43(12):3563–3570. http://dx.doi.org/10.1016/S0032-3861(02)00112-X

  114. Mogi Y, Mori K, Matsushita Y, Noda I (1992) Tricontinuous morphology of triblock copolymers of the ABC type. Macromolecules 25(20):5412–5415. doi:10.1021/ma00046a044

    CAS  Google Scholar 

  115. Breiner U, Krappe U, Thomas EL, Stadler R (1998) Structural characterization of the “knitting pattern” in polystyrene-block-poly(ethylene-co-butylene)-block-poly(methyl methacrylate) triblock copolymers. Macromolecules 31(1):135–141. doi:10.1021/ma961550d

    CAS  Google Scholar 

  116. Kloninger C, Rehahn M (2004) Bicontinuous gyroidic morphologies in ferrocenyldimethylsilane-b-methyl methacrylate diblock copolymer blends. Macromolecules 37(22):8319–8324. doi:10.1021/ma0489321

    CAS  Google Scholar 

  117. Corté L, Yamauchi K, Court F, Cloître M, Hashimoto T, Leibler L (2003) Annealing and defect trapping in lamellar phases of triblock terpolymers. Macromolecules 36(20):7695–7706. doi:10.1021/ma034169j

    Google Scholar 

  118. Park M, Harrison C, Chaikin PM, Register RA, Adamson DH (1997) Block copolymer lithography: periodic arrays of ~1011 holes in 1 square centimeter. Science 276(5317):1401–1404. doi:10.1126/science.276.5317.1401

    CAS  Google Scholar 

  119. Mansky P, Harrison CK, Chaikin PM, Register RA, Yao N (1996) Nanolithographic templates from diblock copolymer thin films. Appl Phys Lett 68(18):2586–2588

    CAS  Google Scholar 

  120. Black CT, Guarini KW, Milkove KR, Baker SM, Russell TP, Tuominen MT (2001) Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication. Appl Phys Lett 79(3):409–411

    CAS  Google Scholar 

  121. Black CT, Guarini KW, Ying Z, Kim H, Benedict J, Sikorski E, Babich IV, Milkove KR (2004) High-capacity, self-assembled metal-oxide-semiconductor decoupling capacitors. Electron Device Lett IEEE 25(9):622–624. doi:10.1109/LED.2004.834637

    CAS  Google Scholar 

  122. Black CT (2005) Self-aligned self assembly of multi-nanowire silicon field effect transistors. Appl Phys Lett 87(16):163116

    Google Scholar 

  123. Black CT, Ruiz R, Breyta G, Cheng JY, Colburn ME, Guarini KW, Kim HC, Zhang Y (2007) Polymer self assembly in semiconductor microelectronics. IBM J Res Dev 51(5):605–633. doi:10.1147/rd.515.0605

    CAS  Google Scholar 

  124. Guarini KW, Black CT, Zhang Y, Babich IV, Sikorski EM, Gignac LM (2003) Low voltage, scalable nanocrystal FLASH memory fabricated by templated self assembly. Electronic devices meeting, 2003. IEDM ‘03 technical digest. IEEE International, pp 541–544

    Google Scholar 

  125. Cheng JY, Ross CA, Chan VZH, Thomas EL, Lammertink RGH, Vancso GJ (2001) Formation of a cobalt magnetic dot array via block copolymer lithography. Adv Mater 13(15):1174–1178. doi:10.1002/1521-4095(200108)13:15<1174::aid-adma1174>3.0.co;2-q

    CAS  Google Scholar 

  126. Aissou K, Choi HK, Nunns A, Manners I, Ross CA (2013) Ordered nanoscale Archimedean tilings of a templated 3-miktoarm star terpolymer. Nano Lett 13(2):835–839. doi:10.1021/nl400006c

    CAS  Google Scholar 

  127. Choi HK, Nunns A, Sun XY, Manners I, Ross CA (2014) Thin film knitting pattern morphology from a miktoarm star terpolymer. Adv Mater 26(16):2474–2479. doi:10.1002/adma.201305243

    CAS  Google Scholar 

  128. Segalman RA, Yokoyama H, Kramer EJ (2001) Graphoepitaxy of spherical domain block copolymer films. Adv Mater 13(15):1152–1155

    CAS  Google Scholar 

  129. Cheng JY, Ross CA, Thomas EL, Smith HI, Vancso GJ (2002) Fabrication of nanostructures with long-range order using block copolymer lithography. Appl Phys Lett 81(19):3657–3659

    CAS  Google Scholar 

  130. Cheng JY, Zhang F, Chuang VP, Mayes AM, Ross CA (2006) Self-assembled one-dimensional nanostructure arrays. Nano Lett 6(9):2099–2103. doi:10.1021/nl061563x

    CAS  Google Scholar 

  131. Roerdink M, Hempenius MA, Gunst U, Arlinghaus HF, Vancso GJ (2007) Substrate wetting and topographically induced ordering of amorphous PI-b-PFS block-copolymer domains. Small 3(8):1415–1423. doi:10.1002/smll.200700044

    CAS  Google Scholar 

  132. Chuang VP, Gwyther J, Mickiewicz RA, Manners I, Ross CA (2009) Templated self-assembly of square symmetry arrays from an ABC triblock terpolymer. Nano Lett 9(12):4364–4369. doi:10.1021/nl902646e

    CAS  Google Scholar 

  133. Son JG, Gwyther J, Chang J-B, Berggren KK, Manners I, Ross CA (2011) Highly ordered square arrays from a templated ABC triblock terpolymer. Nano Lett 11(7):2849–2855. doi:10.1021/nl201262f

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Netherlands Organization for Scientific Research (NWO-CW), the Technology Foundation of the Netherlands (STW) in the NanoNed program, the University of Twente, and the MESA+ Institute for Nanotechnology of the University of Twente for financial support of this research over many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Julius Vancso .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

3 μ-ISF:

PI-arm-PS-arm-PFS

AES:

Auger electron spectroscopy

ATRP:

Atom transfer radical polymerization

bcc:

Body-centered cubic

BCP:

Block copolymer

CMOS:

Complementary metal oxide semiconductor

fcc:

Face-centered cubic

HSQ:

Hydrogen silsesquioxane

ISF:

PI-b-PS-b-PFS

NCA:

ROP α-amino acid N-carboxyanhydride ring-opening polymerization

NIL:

Nanoimprint lithography

ODT:

Order-disorder transition

PB:

Poly(butadiene)

PDI:

Polydispersity index

PDMS:

Poly(dimethylsiloxane)

PEO:

Poly(ethylene oxide)

PES:

Poly(ethersulfone)

PFiPMS:

Poly(ferrocenylisopropylmethylsilane)

PFMPS:

Poly(ferrocenylmethylphenylsilane)

PFS:

Poly(ferrocenylsilanes)

PI:

Poly(isoprene)

PMMA:

Poly(methyl methacrylate)

PROP:

Photocontrolled living anionic ring-opening polymerization

PS:

Poly(styrene)

RIE:

Reactive ion etching

ROP:

Ring-opening polymerization

SAM:

Self-assembled monolayer

SANS:

Small-angle neutron scattering

SPPS:

Solid-phase peptide synthesis

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Dos Ramos, L., Hempenius, M.A., Vancso, G.J. (2015). Poly(ferrocenylsilanes) with Controlled Macromolecular Architecture by Anionic Polymerization: Applications in Patterning and Lithography. In: Hadjichristidis, N., Hirao, A. (eds) Anionic Polymerization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54186-8_8

Download citation

Publish with us

Policies and ethics