Skip to main content
Log in

Structure, photoluminescence and electrical properties of Eu–Nd codoped CaBi4Ti4O15 synthesized by sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Eu–Nd codoped CaBi3.75−x Eu x Nd0.25Ti4O15 (CBENT) powders were synthesized by a simple sol–gel method. Their structures were examined by X-ray diffraction, Raman spectrum, respectively. The coexistence of orthorhombic and tetragonal phase was found when the Eu3+ doping content varied from 0.3 to 0.6. The photoluminescence properties of the CBENT powders show that the intense emission bands centered at around 574, 590 and 612 nm are due to the transitions of 5D0 → 7F0, 5D0 → 7F1 and 5D0 → 7F2 of the Eu3+ ions, respectively. The spectra of the temperature dependence of dielectric constant indicate that the Curie temperature T C gradually decreases from 785 to 765 °C. The peaks of dielectric constant are restrained with increasing Eu3+ doping concentration, suggesting the weakness of the ferroelectricity. Combining the photoluminescence with the ferroelectric property in the CBENT, the optimal Eu3+ doping concentration x is 0.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goncalves MD, Cavalcante LS, Sczancoski JC, Espinosa JWM, Pizani PS, Longo E, Rosa ILV (2009) Opt Mater 31:1134

    Article  CAS  Google Scholar 

  2. Battisha IK, Badr Y, Shash NM, Elshaarawy MG, Darwish AGA (2010) J Sol-Gel Sci Technol 53:543

    Article  CAS  Google Scholar 

  3. Murakami S, Morita M, Herren M, Sakurai T, Rau D (2000) J Lumin 87–89:694

    Article  Google Scholar 

  4. Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W (1999) Nature 401:682

    Article  CAS  Google Scholar 

  5. Fang PY, Fan HQ, Li J, Chen L, Liang FJ (2010) J Alloy Compd 497:416

    Article  CAS  Google Scholar 

  6. Hou RZ, Chen XM (2006) J Eur Ceram Soc 26:1379

    Article  CAS  Google Scholar 

  7. Simões AZ, Riccardi CS, Ramírez MA, Cavalcante LS, Longo E, Varela JA (2007) Solid State Sci 9:756

    Article  Google Scholar 

  8. Lu CJ, Liu XL, Chen XQ, Nie CJ (2006) Appl Phys Lett 89:062905

    Article  Google Scholar 

  9. Simões AZ, Ries A, Filho FM, Riccardi CS, Varela JA (2004) Appl Phys Lett 85:5962

    Article  Google Scholar 

  10. Zeng JT, Li YX, Wang D, Yin QR (2005) Solid State Commun 133:553

    Article  CAS  Google Scholar 

  11. Ruan KB, Chen XM, Liang T, Wu GH, Bao DH (2008) J Appl Phys 103:074101

    Article  Google Scholar 

  12. Aizawa K, Ohtani Y (2007) Jpn J Appl Phys Part 1 46:6944

    Google Scholar 

  13. Zhou H, Wu GH, Qin N, Bao DH (2010) J. Am Ceram Soc 93:2109

    Article  CAS  Google Scholar 

  14. Kennedy BJ, Zhou QD, Ismunandar YK, Kubota Y, Kato K (2008) J Solid State Chem 181:1377

    Article  CAS  Google Scholar 

  15. Yang QB, Lia YX, Yin QG, Wang PL, Cheng YB (2003) J Eur Ceram Soc 23:161

    Article  CAS  Google Scholar 

  16. Gasparotto G, Lima SAM, Davolos MR, Varela JA, Longo E, Zaghete MA (2008) J Lumin 128:1606

    Article  CAS  Google Scholar 

  17. Murillo AG, Romo FJC, Hernández MG, Salgado JR, Crespo MAD, Sánchez SAP, Terrones H (2010) J Sol-Gel Sci Technol 53:121

    Article  Google Scholar 

  18. Kojima S, Imaizumi R, Hamazaki S, Takashige M (1994) Jpn J Appl Phys Part 1 33:5559

    Google Scholar 

  19. Tanwar A, Sreenivas K, Gupta V (2009) J Appl Phys 105:084105

    Article  Google Scholar 

  20. Du YL, Chen G, Zhang MS (2004) Solid State Commun 132:175

    Article  CAS  Google Scholar 

  21. Mazzo TM, Moreira ML, Pinatti IM, Picon FC, Leite ER, Rosa ILV, Varela JA, Perazolli LA, Longo E (2010) Opt Mater 32:990

    Article  CAS  Google Scholar 

  22. Cho S, Lee H, Moon C, Kim J, Park J, Jeon G, Lee R, Nam S (2010) J Sol-Gel Sci Technol 53:171

    Article  CAS  Google Scholar 

  23. Fan X, Wu X, Wang M, Qiu J, Kawamoto Y (2004) Mater Lett 58:2217

    Article  CAS  Google Scholar 

  24. Badr Y, Salah A, Battisha IK (2005) J Sol-Gel Sci Technol 34:219

    Article  CAS  Google Scholar 

  25. Yang QH, Fang L, Zheng FG, Shen MR (2009) Mater Chem Phys 118:484

    Article  CAS  Google Scholar 

  26. Subbarao EC (1962) J Phys Chem Solids 23:665

    Article  CAS  Google Scholar 

  27. Suarez DY, Reaney IM, Lee WE (2001) J Mater Res 16:3139

    Article  CAS  Google Scholar 

  28. Wang CM, Wang JF (2006) Appl Phys Lett 89:202905

    Article  Google Scholar 

  29. Murugan AV, Gaikwad AB, Samuel V, Ravi V (2007) Ceram Int 33:569

    Article  CAS  Google Scholar 

  30. Yan HX, Li CE, Zhou JG, Zhu WM, He LX, Song YX (2000) Jpn J Appl Phys 39:6339

    Article  CAS  Google Scholar 

  31. Hashimoto T, Ishibashi K, Yoko T (1997) J Sol-Gel Sci Technol 9:211

    CAS  Google Scholar 

  32. Xie D, Zhang ZG, Ren TL, Liu LT (2007) J Sol-Gel Sci Technol 42:271

    Article  CAS  Google Scholar 

  33. Hardy A, Bael MKV, Rul HVD, Vangenechten D, Mullens J, Goux JDHL, Wouters DJ (2007) J Sol-Gel Sci Technol 42:239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Peng Zheng, Zhigang Gai and Minglei Zhao for dielectric, ferroelectric test and helpful discussion. This work was supported by the Natural Science Foundation of China under the grant No 50802023, Scientific and Technological Brainstorm Key Project of Henan Province (082102270039, 102102210115), the Finance Assistance Scheme of Backbone Youth Teachers in University of Henan Province (2009GGJS-026) Research Plan for Natural Science in the Education Department of Henan Province (2009A430002, 2011A430004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. W. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, H.W., Liu, X.Y., Wang, W.C. et al. Structure, photoluminescence and electrical properties of Eu–Nd codoped CaBi4Ti4O15 synthesized by sol–gel method. J Sol-Gel Sci Technol 58, 539–544 (2011). https://doi.org/10.1007/s10971-011-2425-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2425-8

Keywords

Navigation