Skip to main content
Log in

Synthesis of MCM-48 from silatrane via sol–gel process

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

High-quality cubic MCM-48 is successfully synthesized using a new silica source known as silatrane and cetyltrimethylammonium bromide (CTAB) as the structure-directing agent via sol–gel process. The effects of synthesis parameters, viz. crystallization temperature, crystallization time, surfactant concentration, quantity of NaOH, and silica source, on the product structure are investigated. The synthesized samples are characterized using X-ray diffractometer (XRD), N2 adsorption–desorption isotherms, and electron microscopy. Optimally, this product is synthesized from samples crystallized at 140°C for 16 h with a CTAB/SiO2 ratio of 0.3 and NaOH/SiO2 ratio of 0.5. The XRD result exhibits a well-resolved pattern, corresponding to the Ia3d space group of MCM-48. The BET surface area of this product is as high as 1,300 m2/g with a narrow pore-size distribution of 2.86 nm. The scanning electron microscopic (SEM) images also show the truncated octahedral shape and well-ordered pore system of MCM-48 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  2. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    Article  CAS  Google Scholar 

  3. Shao Y, Wang L, Zhang J, Anpo M (2005) Microporous Mesoporous Mater 86:314

    Article  CAS  Google Scholar 

  4. Sayari A (1996) Chem Mater 8:1840–1852

    Article  CAS  Google Scholar 

  5. Vinu A, Murugesan V, Hartmann M (2003) Chem Mater 15:1385–1393

    Article  CAS  Google Scholar 

  6. Monnier A, Schüth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky M, Krishnamurty GD, Petroff P, Firouzi A, Janicke M (1993) Science 261:1299

    Article  CAS  Google Scholar 

  7. Xu J, Luan Z, He H, Zhou W, Kevan L (1998) Chem Mater 10:3690

    Article  CAS  Google Scholar 

  8. Huo Q, Margolese DI, Stucky GD (1996) Chem Mater 8:1147

    Article  CAS  Google Scholar 

  9. Gallis KW, Landry CC (1997) Chem Mater 9:2035

    Article  CAS  Google Scholar 

  10. Corma A, Kan Q, Rey F (1998) Chem Commun 579–580

  11. Ryoo R, Joo SH, Kim JM (1999) J Phys Chem B 103:7435

    Article  CAS  Google Scholar 

  12. Sayari A (2000) J Am Chem Soc 122:6504

    Article  CAS  Google Scholar 

  13. Xia YD, Mokaya R (2003) J Mater Chem 13:657

    Article  CAS  Google Scholar 

  14. Kumar D, Schumarcher K, Hohenesche C, Grün M, Unger KK (2001) Colloids Surf A 187–188:109–116

    Article  Google Scholar 

  15. Kim TW, Chun PW, Lin VSY (2010) Chem Mater 22:5093–5104

    Article  CAS  Google Scholar 

  16. Wang L, Shao Y, Zhang J, Anpo M (2006) Microporous Mesoporous Mater 95:17–25

    Article  CAS  Google Scholar 

  17. Wang L, Zhang J, Chen F (2009) Microporous Mesoporous Mater 122:229–233

    Article  CAS  Google Scholar 

  18. Phiriyawirut P, Magaraphan R, Jamieson AM, Wongkasemjit S (2003) Mater Sci Eng A 361:147–154

    Article  Google Scholar 

  19. Charoenpinijkarn W, Suwankruhasn M, Kesapabutr B, Wongkasemjit S, Jamieson AM (2001) Eur Polym J 37:1441–1448

    Article  CAS  Google Scholar 

  20. Sathupanya M, Gulari E, Wongkasemjit S (2002) J Eur Ceram Soc 22:1293–1303

    Google Scholar 

  21. Sathupanya M, Gulari E, Wongkasemjit S (2003) J Eur Ceram Soc 23:2305–2314

    Google Scholar 

  22. Phonthammachai N, Chairassameewong T, Gulari E, Jameison AM, Wongkasemjit S (2003) J Met Mater Min 12:23

    Google Scholar 

  23. Phiriyawirut P, Jamieson AM, Wongkasemjit S (2005) Microporous Mesoporous Mater 77:203–213

    Article  CAS  Google Scholar 

  24. Thanabodeekij N, Tanglumlert W, Gulari E, Wongkasemjit S (2005) Appl Organomet Chem 19:1047–1054

    Article  CAS  Google Scholar 

  25. Thanabodeekij N, Sadthayanon S, Gulari E, Wongkasemjit S (2006) Mater Chem Phys 98:131–137

    Article  CAS  Google Scholar 

  26. Mintova S, Cejka J (2007) Stud Surf Sci Catal 168:301–326

    Article  CAS  Google Scholar 

  27. Cejka J, Mintova S (2007) Catal Rev 49:457–509

    CAS  Google Scholar 

  28. Perez-Ramirez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Chem Soc Rev 37:2530–2542

    Article  CAS  Google Scholar 

  29. Phiriyawirut P, Magaraphan R, Jamieson AM, Wongkasemjit S (2003) Microporous Mesoporous Mater 64(1–3):83–93

    Article  CAS  Google Scholar 

  30. Kruk M, Jaroniec M, Peña ML, Rey F (2002) Chem Mater 14:4434–4442

    Article  CAS  Google Scholar 

  31. Roth WJ (2009) Adsorption 15:221–226

    Article  CAS  Google Scholar 

  32. Chang Z, Zhu L, Kevan L (1999) J Phys Chem B 103:9442

    Article  CAS  Google Scholar 

  33. Xu J, Luan Z, He H, Zhou W, Kwvan L (1998) Chem Mater 10:3690–3698

    Article  CAS  Google Scholar 

  34. Taralkar US, Jha RK, Joshi PN (2007) J Non Cryst Solids 353:194–199

    Article  CAS  Google Scholar 

  35. Taralkar US, Kasture MW, Joshi PN (2008) J Phys Chem Solids 69:2075–2081

    Article  CAS  Google Scholar 

  36. Wei FY, Liu ZW, Lu J, Liu ZT (2010) Microporous Mesoporous Mater 131:224–229

    Article  CAS  Google Scholar 

  37. Sing KSW, Everett DH, Houl RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  38. Petitto C, Galarneau A, Driole MF, Chiche B, Alonso B, Renzo FD, Fajula F (2005) Chem Mater 17:2120–2130

    Article  CAS  Google Scholar 

  39. Tanglumlert W, Imae T, White TJ, Wongkasemjit S (2007) J Am Ceram Soc 90(12):3992–3997

    CAS  Google Scholar 

  40. Lysenko ND, Shvets AV, Il’in VG (2008) Theor Exp Chem 44:195–199

    Article  CAS  Google Scholar 

  41. Yu J, Shi JL, Wang LZ, Gao JH, Yan DS (2000) J Mater Sci Lett 19:1461–1464

    Article  CAS  Google Scholar 

  42. Behrens P, Glaue A, Haggenmüller C, Schechner G (1997) Solid state Ionics 101–103:255–260

    Google Scholar 

  43. Collart O, Van Der Voort P, Vansant EF, Desplantier D, Galarneau A, Di Renzo F, Fajula F (2001) J Phy Chem B 105:12777–112771

    Article  Google Scholar 

  44. Díaz I, Pérez-Pariente J, Terasaki O (2004) J Mater Chem 14:48–53

    Article  Google Scholar 

  45. Alfredsson V, Anderson MW, Ohsuna T, Terasaki O, Jacob M, Bojrup M (1997) Chem Mater 9:2066–2070

    Article  CAS  Google Scholar 

  46. Schumacher K, Ravikovitch PI, Chensne AD, Neimark AV, Unger KK (2000) Langmuir 16:4648–4654

    Article  CAS  Google Scholar 

  47. Zhao W, Li Q, Wang L, Chu J, Qu J, Li S, Qi T (2010) Langmuir 26(10):6982–6988

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the Thailand Research Fund and the Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Thailand. The authors would like to thank Mr. John M. Jackson for English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujitra Wongkasemjit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longloilert, R., Chaisuwan, T., Luengnaruemitchai, A. et al. Synthesis of MCM-48 from silatrane via sol–gel process. J Sol-Gel Sci Technol 58, 427–435 (2011). https://doi.org/10.1007/s10971-011-2409-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2409-8

Keywords

Navigation