Journal of Sol-Gel Science and Technology

, Volume 54, Issue 2, pp 174–187 | Cite as

Inorganic–organic sol gel hybrid coatings for corrosion protection of metals

Original Paper

Abstract

Inorganic–organic hybrid coatings by sol–gel process are very suitable for fighting corrosion. Inorganic sols in hybrid coatings not only increase adhesion by forming chemical bonds between metals and hybrid coatings, but also improve comprehensive performances of polymer in the coatings. Different organic polymers or organic functionalities are introduced into gel network to achieve tailored properties, such as hydrophobic properties, increasing cross-linking density, etc. As for corrosion protection of metals organic components of hybrid coatings are selected to repel water and form dense thick films and reduce coating porosity. The factors, such as the ratio of inorganic and organic components, cure temperature, pigments in hybrid coatings, need to be optimized for attaining hybrid films with the maximum corrosion resistance. Electro-deposition technique offers relatively thick homogeneous defect-free hybrid coatings in comparison to dip or spin coating techniques. Green cerium ions and non-ionizable organic inhibitors are more developed in hybrid coatings nowadays than other corrosion inhibitors. Long-term corrosion resistance techniques of inhibitors are discussed. The inhibitors entrapped in the nanocontainers are doped in hybrid films to prolong release of the inhibitors to damaged zones, which is discussed in detail. Among all the nanocontainers of corrosion inhibitors the prospective techniques which show superior corrosion protection are cyclodextrin/organic inhibitor inclusion complexes and layer by layer assembly of organic corrosion inhibitors in nanocontainers. Super-hydrophobic property of hybrid coatings derives from low surface tension and surface roughness of hybrid coatings, which endues the films with excellent corrosion protection for metals, but the durable property of super-hydrophobic coatings needs to be improved for industrial application. An ideal multiple model of hybrid coatings for superior anti-corrosion of metals proposed is a combination of super-hydrophobic hybrid coatings and underlying hybrid coatings doped with sustained release of corrosion inhibitors on metal substrates.

Keywords

Inorganic–organic sol gel hybrid coatings Corrosion inhibitor Corrosion protection of metals Super-hydrophobic hybrid coatings 

References

  1. 1.
    Dave BC, Hu X, Devaraj Y, Dhali SK (2004) J Sol-Gel Sci Technol 32:143–147CrossRefGoogle Scholar
  2. 2.
    Anon (2007) Mater Perform 46(11):14–15Google Scholar
  3. 3.
    Zheludkevich ML, Miranda Salvado I, Ferreira MGS (2005) J Mater Chem 15:5099–5111CrossRefGoogle Scholar
  4. 4.
    Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego, pp 787, 839–880Google Scholar
  5. 5.
    Ono S, Tsuge H, Nishi Y, Hirano S-I (2004) J Sol-Gel Sci Technol 29(3):147–153CrossRefGoogle Scholar
  6. 6.
    Du YJ, Damron M, Tang G, Zheng H, Chu C, Osborne JH (2001) Prog Org Coat 41:226CrossRefGoogle Scholar
  7. 7.
    Mosher BP (2006) Synthesis and characterization of sol–gel nanocomposites demonstrating enhanced mechanical properties. MSc Dissertation, North Carolina State UniversityGoogle Scholar
  8. 8.
    Yuan J, Zhou S, Gu G, Wu L (2005) J Mater Sci 40(15):3927–3932CrossRefADSGoogle Scholar
  9. 9.
    Greegor RB, Blohwiak KY, Osborne JH, Krienke KA, Cherian JT, Lytle FW (2001) J Sol-Gel Sci Technol 20:35–50CrossRefGoogle Scholar
  10. 10.
    Mayrand M, Quinson JF, Roisne V, Guyon H (1998) J Sol-Gel Sci Technol 13:779–782CrossRefGoogle Scholar
  11. 11.
    Chang K-C, Lin H-F, Lin C-Y et al (2008) J Nanosci Nanotechnol 8(6):3040–3049CrossRefPubMedGoogle Scholar
  12. 12.
    Khramov AN, Balbyshev VN, Kasten LS, Mantz RA (2006) Thin Solid Films 514:174CrossRefADSGoogle Scholar
  13. 13.
    Lamakaa SV, Montemorc MF, Galio AF, Zheludkevich ML, Trindade C, Dick LF, Ferreira MGS (2008) Electrochim Acta 53:4773–4783CrossRefGoogle Scholar
  14. 14.
    Deflorian F, Rossi S, Fedrizzi L, Fedel M (2008) Prog Org Coat 63:338–344CrossRefGoogle Scholar
  15. 15.
    Andreatta F, Aldighieri P, Paussa L, Di Maggio R, Rossi S, Fedrizzi L (2007) Electrochim Acta 52(27):7545–7555CrossRefGoogle Scholar
  16. 16.
    Narita T, Kikuchi N, Kawasaki K, Ozaki Y (1996) J Ceram Soc Japan 104(6):504–509Google Scholar
  17. 17.
    Zheng SX, Lin YJ, Lv ZP (2008) Acta Polym Sin 10:979–984Google Scholar
  18. 18.
    Pellice SA, Fasce DP, Williams RJJ (2007) J Appl Polym Sci 105(4):2351–2356CrossRefGoogle Scholar
  19. 19.
    Yeh J-M, Weng C-J, Liao W-J, Mau Y-W (2006) Surf Coat Technol 201(3–4):1788–1795CrossRefGoogle Scholar
  20. 20.
    Metroke TL, Knobbe ET (2000) Crosslinked organic–inorganic hybrid thin films for corrosion resistance: spectroscopic and salt spray characterization In: Materials research society symposium—proceedings, vol 628. Organic/Inorganic Hybrid Materials, San Francisco, pp CC11.4.1–CC11.4.6Google Scholar
  21. 21.
    Wang H-L, Tian M, Zhang Y (2009) Polym Mater Sci Eng 25(1):130–132Google Scholar
  22. 22.
    Sailer RA, Soucek MD (1998) Prog Org Coat 33:36–43CrossRefGoogle Scholar
  23. 23.
    Duran A, Castro Y, Aparicio M, Conde A, de Damborenea JJ (2007) Int Mater Res 52(3):175–192CrossRefGoogle Scholar
  24. 24.
    Poznyak SK, Zheludkevich ML, Raps D, Gammel F, Yasakau KA, Ferreira MGS (2008) Prog Org Coat 62:226–235CrossRefGoogle Scholar
  25. 25.
    Brinker CJ, Scherer GW (1994) Sol–gel science, the physics and chemistry of the sol–gel processing, chap. 6. Academic Press, San DiegoGoogle Scholar
  26. 26.
    de Damborenea J, Pellegri N, de Sanctis O, Duŕan A (1995) J Sol-Gel Sci Technol 4:247CrossRefGoogle Scholar
  27. 27.
    Manson J-AE, Singh B, Bouchet J, Rochat G, Leterrier Y, Fayet P (2007) Surf Coat Technol 201(16–17):7107–7114Google Scholar
  28. 28.
    Singh B, Bouchet J, Leterrier Y, Manson J-AE, Rochat G, Fayet P (2007) Surf Coat Technol 202(2):208–216CrossRefGoogle Scholar
  29. 29.
    Hirai S, Shimakage K, Sekiguchi M, Wada K, Nukui A (1999) J Am Ceram Soc 82:2011CrossRefGoogle Scholar
  30. 30.
    Park JS, Mackenzie JD (1995) J Am Ceram Soc 78:2669CrossRefGoogle Scholar
  31. 31.
    Khramov AN, Balbyshev VN, Voevodin NN, Donley MS (2003) Prog Org Coat 47:207–213CrossRefGoogle Scholar
  32. 32.
    Liu Y, Sun D, You H, Chung JS (2005) Appl Surf Sci 246:82–89CrossRefADSGoogle Scholar
  33. 33.
    Seok S, Kim JH, Choi KH, Hwang YY (2006) Surf Coat Technol 200(11):3468–3472CrossRefGoogle Scholar
  34. 34.
    Messaddeq SH, Pulcinelli SH, Santilli CV, Guastaldi AC, Messaddeq Y (1999) J Non-Cryst Solids 247:164–170CrossRefADSGoogle Scholar
  35. 35.
    Wang X-h, Sun Y-m, Liu S-h, Sun H-x, Sheng Y-q (2006) Corros Sci Protect Technol 18(4):292–294Google Scholar
  36. 36.
    Ono S, Tsuge H, Nishi Y, Hirano S (2004) J Sol-Gel Sci Technol 29:147CrossRefGoogle Scholar
  37. 37.
    Pellice S, Galliano P, Castro Y, Duran A (2003) J Sol-Gel Sci Technol 28:81CrossRefGoogle Scholar
  38. 38.
    Fidalgo A, Ilharco LM (2003) J Sol-Gel Sci Technol 26:357–362CrossRefGoogle Scholar
  39. 39.
    Chou TP, Chandrasekaran C, Limmer SJ, Seraji S, Wu Y, Forbess MJ, Nguyen C, Gao GZ (2001) J Non-Cryst Solids 290:153CrossRefADSGoogle Scholar
  40. 40.
    Watanabe K, Sakairi M, Takahashi H, Hirai S, Yamaguchi S (1999) J Electroanal Chem 473:250CrossRefGoogle Scholar
  41. 41.
    Castro Y, Ferrari B, Moreno R, Duran A (2003) J Sol-Gel Sci Technol 26:735CrossRefGoogle Scholar
  42. 42.
    Sheffer M, Groysman A, Mandler D (2003) Corros Sci 45:2893CrossRefGoogle Scholar
  43. 43.
    Roux S, Audebert P, Pagetti J, Roche M (2002) New J Chem 26:298CrossRefGoogle Scholar
  44. 44.
    Castro Y, Ferrari B, Moreno R, Duran A (2005) Surf Coat Technol 191(2–3):228–235CrossRefGoogle Scholar
  45. 45.
    Neto PL, Atik M, Avaca LA, Aegerter MA (1994) J Sol-Gel Sci Technol 1:177CrossRefGoogle Scholar
  46. 46.
    Wang H, Akid R (2007) Corros Sci 49:4491–4503CrossRefGoogle Scholar
  47. 47.
    Okuzaki S, Okude K, Ohishi T (2000) J Non-Cryst Solids 265:61–67CrossRefADSGoogle Scholar
  48. 48.
    Chou TP, Chandrasekaran C, Cao GZ (2003) J Sol-Gel Sci Technol 26(1–3):321–327CrossRefGoogle Scholar
  49. 49.
    Ruhi G, Modi OP, Sinha ASK, Singh IB (2008) Corros Sci 50:639–649CrossRefGoogle Scholar
  50. 50.
    Gallardo J, Duran A, Garcia I, Celis JP, Arenas MA, Conde A (2003) J Sol-Gel Sci Technol 27(2):175–183CrossRefGoogle Scholar
  51. 51.
    Galliano P, de Damborenea J, Pascual MJ, Durán A (1998) J Sol-Gel Sci Technol 13:723CrossRefGoogle Scholar
  52. 52.
    Rajamani D, Iroh JO (2006) Corrosion performance of environmentally friendly corrosion resistant hybrid nanocomposite coatings. In: International SAMPE symposium and exhibition (proceedings), vol 51, SAMPE ‘06: Creating new opportunities for the world economy, Long Beach, CA, p 13Google Scholar
  53. 53.
    López DA, Rosero-Navarro NC, Ballarre J, Durán A, Aparicio M, Ceré S (2008) Surf Coat Technol 202:2194–2201CrossRefGoogle Scholar
  54. 54.
    Khramov AN, Voevodin NN, Balbyshev VN, Donley MS (2004) Thin Solid Films 447:549CrossRefADSGoogle Scholar
  55. 55.
    Voevodin NN, Balbyshev VN, Khobaib M, Donley MS (2003) Prog Org Coat 47:416CrossRefGoogle Scholar
  56. 56.
    Donley MS, Balbyshev VN, Vreugdenhil AJ (2001) J Coat Technol 73:915Google Scholar
  57. 57.
    Vreugdenhil AJ, Balbyshev VN, Donley MS (2001) J Coat Technol 73:35CrossRefGoogle Scholar
  58. 58.
    Yeun J-H, Bang G-S, Park BJ, Ham SK, Chang J-H (2006) J Appl Polym Sci 101(1):591–596CrossRefGoogle Scholar
  59. 59.
    Malzbender J, de With G (2002) Adv Eng Mater 4:296CrossRefGoogle Scholar
  60. 60.
    Chou TP, Chandrasekaran C, Limmer S, Nguyen C, Cao GZ (2002) J Mater Sci Lett 21(3):251–255CrossRefGoogle Scholar
  61. 61.
    Gallardo J, Galliano P, Durán A (2001) J Sol-Gel Sci Technol 21:65CrossRefGoogle Scholar
  62. 62.
    Twite RL, Bierwagen GP (1998) Prog Org Coat 33:91CrossRefGoogle Scholar
  63. 63.
    Buchheit RG, Guan H, Mahajanam S, Wong F (2003) Prog Org Coat 47:174CrossRefGoogle Scholar
  64. 64.
    Kasten LS, Grant JT, Grebasch N, Voevodin N, Arnold FE, Donley MS (2001) Surf Coat Technol 140:11CrossRefGoogle Scholar
  65. 65.
    Zheludkevich ML, Serra R, Montemor MF, Yasakau KA, Miranda Salvado IM, Ferreira MGS (2005) Electrochim Acta 51:208CrossRefGoogle Scholar
  66. 66.
    Voevodin NN, Grebasch NT, Soto WS, Arnold FE, Donley MS (2001) Surf Coat Technol 140:24CrossRefGoogle Scholar
  67. 67.
    Yasakau KA, Zheludkevich ML, Lamaka SV, Ferreira MGS (2006) J Phys Chem B 110:5515CrossRefPubMedGoogle Scholar
  68. 68.
    Pepe A, Aparicio M, Duran A, Cere S (2006) J Sol-Gel Sci Technol 39(2):131–138CrossRefGoogle Scholar
  69. 69.
    Garcia-Heras M, Jimenez-Morales A, Casal B, Galvan JC, Radzki S, Villegas MA (2004) J Alloys Compd 380(1–2):219–224CrossRefGoogle Scholar
  70. 70.
    Palanivel V, Huang Y, van Ooij WJ (2005) Prog Org Coat 53:153CrossRefGoogle Scholar
  71. 71.
    Cicileo GP, Rosales BM, Varela FE, Vilche JR (1998) Corros Sci 40:1915CrossRefGoogle Scholar
  72. 72.
    Khramova AN, Voevodinb NN, Balbysheva VN, Mantz RA (2005) Thin Solid Films 483:191–196CrossRefADSGoogle Scholar
  73. 73.
    Zheludkevich ML, Yasakau KA, Poznyak SK, Ferreira MGS (2005) Corros Sci 47(12):3368–3383CrossRefGoogle Scholar
  74. 74.
    Garrigues L, Pebere N, Dabosi F (1996) Electrochim Acta 41:1209CrossRefGoogle Scholar
  75. 75.
    Zheludkevich ML, Serra R, Montemor MF, Ferreira MGS (2005) Electrochem Commun 8:836CrossRefGoogle Scholar
  76. 76.
    Dry CM, Corsaw MJT (1998) Cem Concr Res 28:1133CrossRefGoogle Scholar
  77. 77.
    Kendig M, Hon M, Warren L (2003) Prog Org Coat 47:183CrossRefGoogle Scholar
  78. 78.
    Tatematsu H, Sasaki T (2003) Cem Concr Compos 25:123CrossRefGoogle Scholar
  79. 79.
    Yang H, van Ooij WJ (2003) Plasmas Polym 8:297CrossRefGoogle Scholar
  80. 80.
    Sukhorukov GB (2001) Novel methods to study interfacial layers. Elsevier, Amsterdam, p 38Google Scholar
  81. 81.
    Shchukin DG, Sukhorukov GB (2004) Adv Mater 16:671CrossRefGoogle Scholar
  82. 82.
    Skirtach AG, Dejugnat C, Braun D et al (2005) Nano Lett 5(7):1371–1377 CrossRefPubMedADSGoogle Scholar
  83. 83.
    Shchukin DG, Lamaka SV, Yasakau KA, Zheludkevich ML, Ferreira MGS, Mohwald H (2008) J Phys Chem C 112(4):958–964CrossRefGoogle Scholar
  84. 84.
    Kachurina O, Knobbe E, Metroke TL, Ostrander JW, Kotov NA (2004) Int J Nanotechnol 1(3):347–365CrossRefGoogle Scholar
  85. 85.
    Westcott SL, Kotov NA, Ostrander JW, Mamedov AA, Reust DK, Roark JP (2004) Corrosion protection by multifunctional stratified coatings. In: 2004 NSTI nanotechnology conference and trade show—NSTI nanotech 2004, Boston, MA, vol 3, pp 288–291Google Scholar
  86. 86.
    Shchukin DG, Zheludkevich ML, Yasakau KA, Lamaka SV, Ferreira MGS, Möhwald H (2006) Adv Mater 18:1672–1678CrossRefGoogle Scholar
  87. 87.
    Zheludkevich ML, Poznyak SK, Rodrigues LM, Raps D, Hack T, Dick LF, Nunes T, Ferreira MGS (2009) Corros Sci. doi: 10.1016/j.corsci.2009.10.020
  88. 88.
    Montemor MF, Ferreira MGS (2007) Electrochim Acta 52:7486CrossRefGoogle Scholar
  89. 89.
    Zheludkevich ML, Shchukin DG, Yasakau KA, Mohwald H, Ferreira MGS (2007) Chem Mater 19(3):402–411CrossRefGoogle Scholar
  90. 90.
    Lamaka SV, Shchukin DG, Andreeva DV, Zheludkevich ML, Möhwald H, Ferreira MGS (2008) Adv Funct Mater 18:3137–3147CrossRefGoogle Scholar
  91. 91.
    Yasakau KA, Zheludkevich ML, Karavai OV, Ferreira MGS (2008) Prog Org Coat 63:352–361CrossRefGoogle Scholar
  92. 92.
    Barkhudarov PM, Shah PB, Watkins EB, Doshi DA, Brinker CJ, Majewski J (2008) Corros Sci 50(3):897–902CrossRefGoogle Scholar
  93. 93.
    Izumi K, Tanaka H, Uchida Y, Tohge N, Minami T (1993) J Mater Sci Lett 12:724CrossRefGoogle Scholar
  94. 94.
    Guglielmi M (1997) J Sol-Gel Sci Technol 8:443Google Scholar
  95. 95.
    Messori M, Fabbri P, Montecchi M, Nannarone S, Pasquali L, Pilati F, Tonelli C, Toselli M (2006) Polymer 47(4):1055–1062CrossRefGoogle Scholar
  96. 96.
    Fabbri P, Messori M, Montecchi M, Pilati F, Taurino R, Tonelli C, Toselli M (2006) J Appl Polym Sci 102(2):1483–1488CrossRefGoogle Scholar
  97. 97.
    Zhu L, Jin Y (2007) Appl Surf Sci 253(7):3432–3439CrossRefADSGoogle Scholar
  98. 98.
    Chang K-C, Chen Y-K, Chen H (2007) J Appl Polym Sci 105(3):1503–1510CrossRefGoogle Scholar
  99. 99.
    Tian H, Yang T, Chen Y (2009) Appl Surf Sci 255(7):4289–4292CrossRefADSGoogle Scholar
  100. 100.
    Zhang Y, Wang H, Yan B, Zhang Y, Yin P, Shen G, Yu R (2008) J Mater Chem 18(37):4442–4449CrossRefGoogle Scholar
  101. 101.
    Shen GX, Chen YC, Lin L, Lin CJ, Scantlebury D (2005) Electrochim Acta 50(25–26):5083–5089CrossRefGoogle Scholar
  102. 102.
    Liu Y, Chen X, Xin JH (2006) Nanotechnology 17(13):3259–3263CrossRefADSGoogle Scholar
  103. 103.
    Ogawa T, Ding Bin, Sone Y, Shiratori S (2007) Nanotechnology 18(16):8CrossRefGoogle Scholar
  104. 104.
    Kubo W, Tatsuma T (2005) Appl Surf Sci 243(1–4):127–130ADSGoogle Scholar
  105. 105.
    Yuewen H, Weiqu L, Guangjian L (2008) Polym Mater Sci Eng 24(11):13–16Google Scholar
  106. 106.
    Zhang H, Lamb R, Lewis J (2005) Sci Technol Adv Mater 6:236–239CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Applied ChemistryNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations