Skip to main content

Sol-Gel Protective Coatings for Metals

  • Reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

This chapter presents a review of the most recent and relevant works developed by a wide range of researchers on different types of protective and functional coatings deposited on metals and alloys to improve their corrosion resistance. The review is focused on the study of coatings produced by sol-gel trying to identify the perspectives for further research. Sol-gel process is a powerful tool to produce environmentally friendly coatings to replace CCC and CAA chromium-containing films. In this chapter, the corrosion behavior of different sol-gel coatings is discussed considering the nature of the coating. Three groups of films have been considered: inorganic coatings, organic–inorganic hybrid coatings, and inorganic and hybrid coatings that incorporate corrosion inhibitors. In general, the adequate performance of the different films requires considering different aspects such as the composition, sol processing conditions, deposition methods, thermal treatments, and final structure. Inorganic sol-gel coatings cannot provide adequate corrosion protection due to the presence of micro-cracks or defects. On the other hand, the introduction of organic components to an inorganic sol-gel system leads to the formation of thicker and more flexible films that enhances the electrochemical behavior and improves the compatibility with different organic top coatings. However, corrosive ions can still diffuse through micro-pores and attack the metallic substrates, producing their degradation when they are exposed to aggressive media for a long time. In all these cases, the protection of the alloys is only sought by creating a dense physical barrier.

The most recent trends in corrosion protection focus on sol-gel coatings doped with environmentally friendly inhibitors. In this case, the barrier effect is combined with the active protection provided by the inhibitor. However, the amount of inhibitor (organic or inorganic) able to be incorporated to the coating is limited. Higher concentrations of inhibitor lead to the formation of defects and to porous structure reducing the barrier properties of the films. The most recent alternatives are related with the preparation of pure cerium glass-like coatings or with the incorporation of nano-reservoirs or nano-containers to sol-gel coatings. However, and despite the high number of published articles, there is still no industrially suitable alternative treatment for aircraft aluminum alloys able to provide the required corrosion protection. Alternatively, new sol-gel deposition methods are under development to allow the upscaling of coating processes to be implemented at industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiri S, Rahimi A. Preparation of supramolecular corrosion-inhibiting nanocontainers for self-protective hybrid nanocomposite coatings. J Polym Res. 2014;21:566–673.

    Google Scholar 

  • Amiri S, Rahimi A. Synthesis and characterization of supramolecular corrosion inhibitor nanocontainers for anticorrosion hybrid nanocomposite coatings. J Polym Res. 2015;22:66–75.

    Google Scholar 

  • Arenas MA, Bethencourt M, Botana FJ, Damborenea JJ, Marcos M. Inhibition of 5083 aluminium alloy and galvanised steel by lanthanide salts. Corros Sci. 2001;43:157.

    CAS  Google Scholar 

  • Atik M, Aegerter MA. Corrosion resistant sol–gel ZrO2 coatings on stainless steel. J Non-Cryst Solids. 1992;147&148:813–9.

    Google Scholar 

  • Atik M, Neto PL, Avaca LA, Aegerter MA, Zarzycki J. Protection of stainless steel against corrosion by SiO2 coatings. J Mater Sci Lett. 1994a;13:1081–5.

    CAS  Google Scholar 

  • Atik M, Zarzycki J, Avaca LA, Aegerter MA. Protective TiO2–SiO2 coatings on stainless steel sheets prepared by dip-coating. J Mater Sci Lett. 1994b;13:1301–4.

    CAS  Google Scholar 

  • Atik M, Kha CR, de Lima Neto P, Avaca LA, Aegerter MA, Zarzcki J. Protection of 316 L stainless steel by zirconia sol–gel coatings in 15% H2SO4 solutions. J Mater Sci Lett. 1995a;14:178–81.

    CAS  Google Scholar 

  • Atik M, Neto PL, Aegerter MA, Avaca LA. Sol–gel TiO2–SiO2 films as protective coatings against corrosion of 316 L stainless steel in H2SO4 solutions. J Appl Electrochem. 1995b;25:142–8.

    CAS  Google Scholar 

  • Atik M, Messaddeq SH, Luna FP, Aegerter MA. Zirconia sol–gel coatings deposited on 304 and 316 L stainless steel for chemical protection in acid media. J Mater Sci Lett. 1996;15:2051–4.

    CAS  Google Scholar 

  • Balgude D, Sabnis A. Sol–gel derived hybrid coatings as an environment friendly surface treatment for corrosion protection of metals and their alloys. J Sol–Gel Sci Technol. 2012;64:124–34.

    CAS  Google Scholar 

  • Barranco V, Carmona N, Galván JC, Grobelny M, Kwiatkowski L, Villegas MA. Electrochemical study of tailored sol–gel thin films as pre-treatment prior to organic coating for AZ91 magnesium alloy. Prog Org Coat. 2010;68:347–55.

    CAS  Google Scholar 

  • Barrow D. Applications of sol–gel ceramic coatings. Key Eng Mater. 1996;122&124:443–50.

    Google Scholar 

  • Bera S, Rout TK, Udayabhanu G, Narayan R. Comparative study of corrosion protection of sol–gel coatings with different organic functionality on Al-2024 substrate. Prog Org Coat. 2015;88:293–303.

    CAS  Google Scholar 

  • Biswas RG, Sanders RD. The effects of a CeO2 coating on the corrosion parameters of type 304 stainless steel. J Mater Eng Perform. 1998;7:727–32.

    CAS  Google Scholar 

  • Biswas RG, Woodhead JL, Bhattacharaya AK. Corrosion studies of inorganic sol–gel alumina coatings on 316 stainless steel. J Mater Sci Lett. 1997;16:1628–33.

    CAS  Google Scholar 

  • Bockris JOM, Reddy AKN. Electroquímica moderna, vol. II. 1st ed. Barcelona: Reverte, S.A.; 1980.

    Google Scholar 

  • Borisova D, Mohwald H, Shchukin DG. Mesoporous silica nanoparticles for active corrosion protection. ACS Nano. 2011;5:1939–46.

    CAS  Google Scholar 

  • Borisova D, Mohwald H, Shchukin DG. Influence of embedded nanocontainers on the efficiency of active anticorrosive coatings for aluminum alloys part II: influence of nanocontainer position. Appl Mater Interf. 2013;5:80–7.

    CAS  Google Scholar 

  • Boysen W, Frattini A, Pellegri N, Sanctis O. Protective coatings on copper prepared by sol–gel for industrial applications. Surf Coat Technol. 1999;122:14–7.

    CAS  Google Scholar 

  • Brown MH, De Long WB, Auld JR. Corrosion by chlorine and by hydrogen chloride at high temperatures. Indust. Eng Chem. 1947; 39(7):839–44.

    Google Scholar 

  • Cambon J-B, Ansart F, Bonino J-P, Turq V. Effect of cerium concentration on corrosion resistance and polymerization of hybrid sol–gel coating on martensitic stainless steel. Prog Org Coat. 2012;75:486–93.

    CAS  Google Scholar 

  • Carvalho JBR, Silva RS, Cesarino I, Machado SAS, Eguiluz KIB, Cavalcanti EB, Salazar-Banda GR. Influence of the annealing temperature and metal salt precursor on the structural characteristics and anti-corrosion barrier effect of CeO2 sol–gel protective coatings of carbon steel. Ceram Int. 2014;40:13437–46.

    CAS  Google Scholar 

  • Casenave C, Pebére N, Dabosi F. An electrochemical impedance study of the corrosion inhibition of a 2024 Aluminum Alloy in neutral chloride solutions: Materials science forum, electrochemical method in corrosion research, edited by Mario G. S. Ferreira and Alda M. P. Simes. 1995.

    Google Scholar 

  • Castro Y. Recubrimientos protectores obtenidos por deposición electroforética a partir de suspensions sol–gel. PhD thesis. Inst. Cerámica y Vidrio (CSIC), Madrid, 2003.

    Google Scholar 

  • Castro Y, Durán A, Moreno R, Ferrari B. Thick sol–gel coatings produced by electrophoretic deposition (EPD). Adv Mater. 2002;14:505–8.

    CAS  Google Scholar 

  • Castro Y, Durán A, Conde A, Damborenea JJ. Electrochemical behaviour of silica basic hybrid coatings on stainless steel. Electrochim Acta. 2008;53(20):6008–17.

    CAS  Google Scholar 

  • Chambers BD, Taylor SR. The high throughput assessment of aluminium alloy corrosion using fluorometric methods. Part II – A combinatorial study of corrosion inhibitors and synergistic combinations. Corros Sci. 2007;49:1597–609.

    CAS  Google Scholar 

  • Chen T, Fu J. An intelligent anticorrosion coating based on pH-responsive supramolecular nanocontainers. Nanotechnology. 2012;23:505705.

    Google Scholar 

  • Chen Y, Jin L, Xie Y. Sol–Gel processing of organic–inorganic nanocomposite protective coatings. J Sol–Gel Sci Technol. 1998;13:735–8.

    CAS  Google Scholar 

  • Cheng YF. Application of microelectrochemical techniques in corrosion research. In: Sharma SK, editor. Green corrosion chemistry and engineering: opportunities and challenges. Weinheim: Wiley-VCH Verlag GmbH & Co; 2012.

    Google Scholar 

  • Chou TP, Chandrasekaran C, Limmer SJ, Seraji S, Wu Y, Forbess MJ, Nguyen C, Cao GZ. Organic–inorganic hybrid coatings for corrosion protection. J Non-Cryst Solids. 2001;290:153–62.

    CAS  Google Scholar 

  • Conde A, de Damborenea JJ. Electrochemical impedance spectroscopy for studying the degradation of enamel coatings. Corros Sci. 2002a;44:1555–67.

    CAS  Google Scholar 

  • Conde A, Macaya D, de Damborenea JJ. Corrosion on enamelled steel by domestic cleaning fluids. Br Corr J. 2000;35:279–83.

    CAS  Google Scholar 

  • Conde A, Durán A, Damborenea JJ. Protección contra la corrosión de aleaciones de aluminio mediante recubrimientos sol–gel. Bol Soc Esp Cerám Vidr. 2002b;41(3):319–23.

    CAS  Google Scholar 

  • Conde A, Durán A, Damborenea JJ. Silica base coatings for protection of galvanised steel. In: Frontiers in corrosion science and technology. Proceedings of the 15th International Corrosion Congress. ICC., Granada. Ref. 420; 2002c. p. 1–6.

    Google Scholar 

  • Conde A, Durán A, Damborenea JJ. Polymeric sol–gel coatings as protective layers of aluminium alloys. Prog Org Coat. 2003;46:288–96.

    CAS  Google Scholar 

  • Conde A, Arenas MA, De Frutos A, de Damborenea J. Effective corrosion protection of 8090 alloy by cerium conversion coatings. Electrochim Acta. 2008;53:7760–8.

    CAS  Google Scholar 

  • Cook AB, Barrett Z, Lyon SB, McMurray HN, Walton J, Williams G. Calibration of the scanning Kelvin probe force microscope under controlled environmental conditions. Electrochim Acta. 2012;66:100–5.

    CAS  Google Scholar 

  • Dalmoro V, dos Santos JHZ, Azambuja DS. Corrosion behaviour of AA2024-T3 alloy treated with phosphonate-containing TEOS. J Solid State Electrochem. 2012;16:403–14.

    CAS  Google Scholar 

  • Dalmoro V, dos Santos JHZ, Alemán C, Azambuj DS. An assessment of the corrosion protection of AA2024-T3 treated with vinyltrimethoxysilane/(3-glycidyloxypropyl)trimethoxysilane. Corros Sci. 2015;92:200–8.

    CAS  Google Scholar 

  • Damborenea JJ, Vázquez AJ, González JA, West DRF. Elimination of intergranular corrosion susceptibility of a sensitized 304 stainless steel by subsequent laser surface treatment. Surf Eng. 1989;5:235–8.

    Google Scholar 

  • Damborenea JJ, Pellegri N, Durán A. Electrochemical behaviour of SiO2 sol–gel coatings on stainless steel. J Sol–Gel Technol. 1995;4:239–44.

    Google Scholar 

  • Dean SW. Corrosion testing of metals under natural atmosphere conditions. In: Baboian R, Dean S, editors. Corrosion testing and evaluation: silver anniversary volume, ASTM STP 1000. Philadelphia: American Society for Testing and Materials; 1990. p. 163–76.

    Google Scholar 

  • Di Giampaolo AR, Medina M, Reyes R, Vélez M. Zinc phosphate interlayer for sol–gel derived aluminosilicate coating on AISI-1010 carbon steel. Surf Coat Technol. 1997;89:31–7.

    Google Scholar 

  • Di Maggio R, Rossi S, Fedrizzi L, Scardi P. ZrO2–CeO2 films as protective coatings against dry and wet corrosion of metallic alloys. Surf Coat Technol. 1997a;89:292–8.

    Google Scholar 

  • Di Maggio R, Tomasi A, Scardi P. Characterisation of thin ceramic coatings on metal substrates. Mater Lett. 1997b;31:345–9.

    Google Scholar 

  • Dias SAS, Marques A, Lamaka SV, Simões A, Diamantino TC, Ferreira MGS. The role of Ce(III)-enriched zeolites on the corrosion protection of AA2024-T3. Electrochim Acta. 2013;112:549–56.

    CAS  Google Scholar 

  • Du YJ, Damron M, Tang G, Zheng H, Chu CJ, Osborne JH. Inorganic/organic hybrid coatings for aircraft aluminium alloy substrates. Prog Org Coat. 2001;41:226–32.

    Google Scholar 

  • Durán A, Castro Y, Aparicio M, Conde A, Damborenea JJ. Protection and surface modification of metals with sol–gel Coatings. Int Mater Rev. 2007;52(3):175–92.

    Google Scholar 

  • Fallet M, Mahdjoub H, Brice Gautier JP, Bauer D. Electrochemical behaviour of ceramic sol–gel coatings on mild steel. J Non-Cryst Solids. 2001;293&295:527–33.

    Google Scholar 

  • Feliú S, Andrade MC. Corrosión y protectión metálica, vol. II. 1st ed. Madrid: Consejo Superior de Investigaciones Científicas (CSIC); 1991.

    Google Scholar 

  • Feng Z, Liu Y, Thompson GE, Skeldon P. Sol–gel coatings for corrosion protection of 1050 aluminium alloy. Electrochim Acta. 2010;55:3518–27.

    CAS  Google Scholar 

  • Fernández-Solis CD, Vimalanandan A, Altin A, Mondragón-Ochoa JS, Kreth K, Keil P, Erbe A. Fundamentals of electrochemistry, corrosion and corrosion protection. In: Lang PR, Liu Y, editors. Soft matter at aqueous interfaces. Cham: Springer International Publishing; 2015.

    Google Scholar 

  • Figueira RB, Silva CJR, Pereira EV. Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: a review of recent progress. J Coat Technol Res. 2015;12(1):1–35.

    CAS  Google Scholar 

  • Fisher G. Ceramic coatings enhance performance engineering. Am Ceram Soc Bull. 1986;65(2):283–7.

    CAS  Google Scholar 

  • Fontinha IR, Salta MM, Zheludkevich ML, Ferrari MGS. EIS study of amine cured epoxy-silica-zirconia sol–gel coatings for corrosion protection of the aluminium alloy EN AW 6063. Protugalice Eclectrochim Acta. 2013;31(6):307–19.

    Google Scholar 

  • Frateur I, Huang VM, Orazem ME, Tribollet B, Vivier V. Experimental issues associated with measurement of local electrochemical impedance. J Electrochem Soc. 2007;154:C719–27.

    CAS  Google Scholar 

  • Frateur I, Huang VMW, Orazem ME, Pébère N, Tribollet B, Vivier V. Local electrochemical impedance spectroscopy: considerations about the cell geometry. Electrochim Acta. 2008;53:7386–95.

    CAS  Google Scholar 

  • Gallardo J, Galliano P, Moreno R, Durán A. Bioactive sol–gel coatings for orthopaedic prosthesis. J Sol–Gel Sci Technol. 2000;19:107–11.

    CAS  Google Scholar 

  • Gallardo J, Galliano P, Durán A. Bioactive and protective sol–gel coatings on metals for orthopaedic prosthesis. J Sol–Gel Sci Technol. 2001;21:65–74.

    CAS  Google Scholar 

  • Gallardo J, García I, Celis JP, Arenas MA, Conde A, Durán A. Effect of sintering temperature on the corrosion and wear behaviour of protective SiO2 based sol–gel coatings. J Sol–Gel Sci Technol. 2003;27:175–83.

    CAS  Google Scholar 

  • Galliano P, Damborenea JJ, Pascual MJ, Durán A. Sol–gel coatings on 316 L steel for clinical applications. J Sol–Gel Sci Technol. 1998;13:723–7.

    CAS  Google Scholar 

  • Garrigues L, Pebere N, Dabosi F. An investigation of the corrosion inhibition of pure aluminum in neutral and acidic chloride solutions. Electrochim Acta. 1996;41:1209–15.

    CAS  Google Scholar 

  • Geffchen W, Berger E. Deutsches Reichspatent, DE736421 asignada a Jenaer Glaswerk Schott&Gen, Jena (Alemania); 1939.

    Google Scholar 

  • Grundmeier G, Schmidt W, Stratmann M. Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation. Electrochim Acta. 2000;45:2515–33.

    CAS  Google Scholar 

  • Guglielmi M. Sol–gel coatings on metals. J Sol–Gel Sci Technol. 1997;8:443–9.

    CAS  Google Scholar 

  • Guglielmi M, Festa D, Innocenzi P, Colombo P, Gobbin M. Borosilicate coatings on mild steel. J Non-Cryst Solids. 1992;147&148:474–7.

    Google Scholar 

  • Guglielmi M, Brusatin G, Tombolan N. Ion migration in tin sol–gel coatings. Riv Stz Sper Vetro. 1993;Sup. 23:495–8.

    Google Scholar 

  • Hack HP, Scully JR. Defect area determination of organic coated steels in seawater using the breakpoint frequency method. J Electrochem Soc. 1991;138(1):33–40.

    CAS  Google Scholar 

  • Hamdy AS. Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys. Mater Lett. 2006;60:2633–7.

    CAS  Google Scholar 

  • Haruyama S, Asari M, Tsuru T. In: Kending M, Leidheiser HJ, editors. Corrosion protection by organic coatings. Pennington: The Electrochemical Society Proceeding Series; 1980. p. 197.

    Google Scholar 

  • Hasannejad H, Aliofkhazraei M, Shanaghi A, Shahrabi T, Sabour AR. Nanostructural and electrochemical characteristics of cerium oxide thin films deposited on AA5083-H321 aluminum alloy substrates by dip immersion and sol–gel methods. Thin Solid Films. 2009;517:4792–9.

    CAS  Google Scholar 

  • Haynes G. In: Baboian R, editor. Corrosion tests and standards application and interpretation, vol 19103. ASTM International, Manual series: MNL 20. Philadelphia; 1995. p. 91–7.

    Google Scholar 

  • Hinton RW, Arnott DR, Ryan NE. Cerium conversion coatings for the corrosion protection of aluminium. Mater Forum. 1986;9(3):162–73.

    CAS  Google Scholar 

  • Hirai S, Shimakagen K, Aizawa S. Alkaline corrosion resistance of anodised coated with zirconium oxide by a sol–gel process. J Am Ceram Soc. 1998;81(12):3087–92.

    CAS  Google Scholar 

  • Hirayama R, Harayama S. Electrochemical impedance for degrades coated steel having pores. Corrosion. 1991;47(12):952–63.

    CAS  Google Scholar 

  • Huang VM, Wu SL, Orazem ME, Pébère N, Tribollet B, Vivier V. Local electrochemical impedance spectroscopy: a review and some recent developments. Electrochim Acta. 2011;56:8048–57.

    CAS  Google Scholar 

  • Hunter RJ. Introduction to modern colloid science. New York: Oxford University Press Inc; 1998.

    Google Scholar 

  • Hurley MF, Efaw CM, Davis PH, Croteau JR, Graugnard E, Birbilis N. Volta potentials measured by scanning Kelvin probe force microscopy as relevant to corrosion of magnesium alloys. Corrosion. 2015;71:160–70.

    CAS  Google Scholar 

  • Innocenzi P, Guglielmi M, Gobbin M, Colombo P. Coatings of metals by the sol–gel dip-coating method. J Eur Ceram Soc. 1992;10:431–6.

    CAS  Google Scholar 

  • Iribarren-Mateos JI, Buj-Corral I, Vivancos-Calvet J, Alemána C, Iribarren JI, Armelin E. Silane and epoxy coatings: a bilayer system to protect AA2024 alloy. Prog Org Coat. 2015;81:47–57.

    CAS  Google Scholar 

  • Izumi K, Murakami M, Deguchi T, Morita A, Tohge N, Minami T. Zirconia coating on stainless steel from organ zirconium compounds. J Am Ceram Soc. 1989;72(8):1465–8.

    CAS  Google Scholar 

  • Izumi K, Tanaka H, Uchida Y, Tohge N, Minami T. Hydrolysis of trifunctional alkoxysilanes and corrosion resistance of steel sheets coated with alkoxysilane-derived films. J Mater Sci Lett. 1993;12:724–7.

    CAS  Google Scholar 

  • Jonschker G, Menning M, Schmidt H. European patent no. EP0973958, 1998.

    Google Scholar 

  • Kato K. Preparation of SiO2 films from Si(OC2H5)4–C2H5OH–H2O solutions without catalysts. J Mater Sci. 1992;27:1445–8.

    CAS  Google Scholar 

  • Kato K. Enhancement of the corrosion resistance of substrates by thin SiO2 coatings prepared from alkoxide solutions without catalysts. J Mater Sci. 1993;28:4033–6.

    CAS  Google Scholar 

  • Kending MW, Scully JR. Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals Corrosion. 1990;46(1):22–9.

    Google Scholar 

  • Khobaib M, Rensi A, Matakis T, Donley MS. Real time mapping of corrosion activity under coatings. Prog Org Coat. 2001a;41:266–72.

    CAS  Google Scholar 

  • Khobaib M, Reynolds LB, Donley MS. A comparative evaluation of corrosion protection of sol–gel based coatings systems. Surf Coat Technol. 2001b;140:16–23.

    CAS  Google Scholar 

  • Khramov AN, Balbyshev VN, Voevodin NN, Donley MS. Nanostructured sol–gel derived conversion coatings based on epoxy- and amino-silanes. Prog Org Coat. 2003;47:207–13.

    CAS  Google Scholar 

  • Khramov AN, Voevodin NN, Balbyshev VN, Donley MS. Hybrid organo-ceramic corrosion protection coatings with encapsulated organic corrosion inhibitors. Thin Solid Films. 2004;447–448:549–57.

    Google Scholar 

  • Khramov AN, Voevodin NN, Balbyshev VN, Mantz RA. Sol–gel-derived corrosion-protective coatings with controllable release of incorporated organic corrosion inhibitors. Thin Solid Films. 2005;483:191–6.

    CAS  Google Scholar 

  • Khramov AN, Balbyshev VN, Kasten LS, Mantz RA. Sol–gel coatings with phosphonate functionalities for surface modification of magnesium alloys. Thin Solid Films. 2006;514:174–81.

    CAS  Google Scholar 

  • Krivian L. Meaning and measurement of corrosion potential. Br Corros J. 1991;26:191–4.

    CAS  Google Scholar 

  • Lakshmi RV, Yoganandan G, Mohan AVN, Bharathibai BJ. Effect of surface pre-treatment by silanization on corrosion protection of AA2024-T3 alloy by sol–gel nanocomposite coatings. Surf Coat Technol. 2014;240:353–60.

    CAS  Google Scholar 

  • Lamaka SV, Zheludkevich ML, Yasakau KA, Serra R, Poznyak SK, Ferreira MGS. Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability. Prog Org Coat. 2007;58:127–35.

    CAS  Google Scholar 

  • Lamaka SV, Montemor MF, Gálio AF, Zheludkevich ML, Trindade C, Dick LF, Ferreira MGS. Novel hybrid sol–gel coatings for corrosion protection of AZ31B. Electrochim Acta. 2008a;53:4773–83.

    CAS  Google Scholar 

  • Lamaka SV, Shchukin DG, Andreeva DV, Zheludkevich ML, Möhwald H, Ferreira MGS. Sol–gel/polyelectrolyte active corrosion protection system. Adv Funct Mater. 2008b;18:3137–47.

    CAS  Google Scholar 

  • Leiva-García R, Sánchez-Tovar R, Escrivà-Cerdán C, García-Antón J. In: Aliofkhazraei DM, editor. Modern electrochemical methods in nano, surface and corrosion science. Croatia: In Tech; 2014.

    Google Scholar 

  • Leng A, Streckel H, Stratmann M. The delamination of polymeric coatings from steel. Part 1: calibration of the Kelvin probe and basic delamination mechanism. Corros Sci. 1999;41:547–78.

    CAS  Google Scholar 

  • Lillard RS, Moran PJ, Isaacs HS. Novel method for generating quantitative local electrochemical impedance spectroscopy. J Electrochem Soc. 1992;139:1007–12.

    CAS  Google Scholar 

  • Liu J, Xu L, Fang Y. Hybrid organic–inorganic sol–gel coatings with interpenetrating network for corrosion protection of tinplate. J Sol–Gel Sci Technol. 2014;71:246–53.

    CAS  Google Scholar 

  • Maliavski N, Tehekounova E, Innocenzi P, Festa D, Guglielmi M, Mancinelli L, Esposti D. Borosilicate coatings on mild steel prepared from aqueous amine solutions: a comparison with the alkoxide routes. J Eur Ceram Soc. 1995;15:337–42.

    CAS  Google Scholar 

  • Maljusch A, Henry JB, Tymoczko J, Bandarenka AS, Schuhmann W. Characterisation of non-uniform functional surfaces: towards linking basic surface properties with electrocatalytic activity. RSC Adv. 2014;4:1532–7.

    CAS  Google Scholar 

  • Marder AR. The metallurgy of zinc-coated steel. Prog Mater Sci. 2000;45:191–271.

    CAS  Google Scholar 

  • Mc Cluney SA, Popova SN, Popov BN, White RE, Griffin RB. Comparing electrochemical impedance spectroscopy methods for estimating the degree of delamination of organic coatings on steel. J. Electrochem. Soc. 1992;139:1556–60.

    Google Scholar 

  • Mennig M, Jonschker G, Schmidt H. Sol-Gel derived thick SiO2 coatings and their thermomechanical and optical properties. SPIE Sol–Gel Opt. 1992;1758(11):125–34.

    Google Scholar 

  • Mennig M, Schelle C, Durán A, Damborenea JJ, Guglielmi M, Brusatin G. Investigation of glass-like sol–gel coatings for corrosion protection of stainless steel against liquid and gaseous attack. J Sol–Gel Sci Technol. 1998;13:717–22.

    Google Scholar 

  • Messaddeq SH, Pulcinelli SH, Santilli CV, Guastzldi AC. Microstructure and corrosion resistance of inorganic–organic (ZrO2–PMMA) hybrid coating on stainless steel. J Non-Cryst Solids. 1999;247:164–70.

    CAS  Google Scholar 

  • Metroke TL, Kachurina O, Knobbe ET. Spectroscopic and corrosion resistance characterization of amine and super acid-cured hybrid organic–inorganic thin films on 2024-T3 aluminum alloy. Prog Org Coat. 2002;44(3):185–99.

    CAS  Google Scholar 

  • Mierisch AM, Taylor SR. Understanding the degradation of organic coatings using local electrochemical impedance methods. I. Community observed features. J Electrochem Soc. 2003;150:B303–8.

    CAS  Google Scholar 

  • Miyazawa K, Suzuki K, Wey MY. Microstructure and oxidation-resistant property of sol–gel derived ZrO2-YO2 films prepared on austenitic stainless steel substrates. J Am Ceram Soc. 1995;78(2):347–55.

    CAS  Google Scholar 

  • Morales A, Ajona JI. Durability, performance and scalability of sol–gel front surface mirrors and selective absorbers. J Phys IV France. 1999;9:513–8.

    Google Scholar 

  • Morales A, Durán A. Patent PCT/ES95/00155; 1995.

    Google Scholar 

  • Morales A, Durán A. Sol–gel protection of silver and aluminium mirrors. J Sol–Gel Sci Technol. 1997;8:451–7.

    CAS  Google Scholar 

  • Murray JM. Electrochemical test methods for evaluating organic coatings on metals: an update. Part III: Multiple test parameter measurements. Prog Org Coat. 1997;31:375–593.

    CAS  Google Scholar 

  • Nazarov A, Romano AP, Fedel M, Deflorian F, Thierry D, Olivier MG. Filiform corrosion of electrocoated aluminium alloy: role of surface pretreatment. Corros Sci. 2012;65:187–98.

    CAS  Google Scholar 

  • Nazeri A, Trzaskoma-Paulette PP, Bauer D. Synthesis and properties of cerium and titanium oxide thin coatings for corrosion protection of 304 stainless steel. J Sol–Gel Sci Technol. 1997;10:317–31.

    CAS  Google Scholar 

  • Neto PL, Atik M, Avaca LA, Aegerter MA. Sol–gel coatings for chemical protection of stainless steel. J Sol–Gel Sci Technol. 1994;2:529–34.

    Google Scholar 

  • Oltra R, Maurice V, Akid R, Marcus P. Local probe techniques for corrosion research. Woodhead Publishing Limited; England; 2014.

    Google Scholar 

  • Özer N, Cronin JP, Jao Y, Tomsia AP. Optical properties of sol–gel deposited Al2O3 films. Solar Energy Mater Solar Cells. 1999;59:355–66.

    Google Scholar 

  • Palanivel V, Huang Y, Van Ooij WJ. Prog Org Coat. 2005;53:153–68.

    CAS  Google Scholar 

  • Palma E, Puente JM, Morcillo M. The atmospheric corrosion mechanism of 55% Al–Zn coating on steel. Corros Sci. 1998;40:61–8.

    CAS  Google Scholar 

  • Paussa L, Rosero-Navarro NC, Andreatta F, Castro Y, Durán A, Aparicio M, Fedrizzi L. Inhibition effect of cerium nitrate solutions on the electrochemical behaviour of bare AA2024-T3. Surf Interface Anal. 2010;42:299–305.

    CAS  Google Scholar 

  • Pérez C, Collazo A, Izquierdo M, Merino P, Nóvoa XR. Characterisation of the barrier properties of different paint systems. Part II, Non-ideal diffusion and water uptake kinetics. Prog Org Coat. 1999;37:169–77.

    Google Scholar 

  • Philippe LVS, Walter GW, Lyon SB. Investigating localized degradation of organic coatings. Comparison of electrochemical impedance spectroscopy with local electrochemical impedance spectroscopy. J Electrochem Soc. 2003;150:B111–9.

    CAS  Google Scholar 

  • Quinson JF, Shino C, Bocdelieve AM. Deformation capability and protective role of zirconia coatings on stainless steel. J Mater Sci. 1996;31:5179–84.

    CAS  Google Scholar 

  • Rahimi A, Amiri S. Anticorrosion hybrid nanocomposite coatings with encapsulated organic corrosion inhibitors. J Coat Technol Res. 2015;12(3):587–93.

    CAS  Google Scholar 

  • Randles JEB. Kinetics of rapid electrode reactions Discuss Faraday Soc. 1947;1:11–9.

    Google Scholar 

  • Rosero-Navarro NC, Castro Y, Aparicio M, Durán A. Recubrimientos vítreos realizados por sol–gel para la proteccion de metales frente a la corrosion, P200930982.

    Google Scholar 

  • Rosero-Navarro NC, Pellice SA, Durán A, Aparicio M. Effects of Ce-containing sol–gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024N. Corros Sci. 2008;50:1283–91.

    CAS  Google Scholar 

  • Rosero-Navarro NC, Pellice SA, Castro Y, Aparicio M, Durán A. Improved corrosion resistance of AA2024 alloys through hybrid organic–inorganic sol–gel coatings produced from sols with controlled polymerization. Surf Coat Technol. 2009;203:1897–903.

    CAS  Google Scholar 

  • Rosero-Navarro NC, Figiel P, Jedrzejewski R, Castro Y, Aparicio M, Pellice SA, Durán A. Influence of cerium concentration on the structure and properties of silica-methacrylate sol–gel coatings. J Sol–Gel Sci Technol. 2010a;54:301–11.

    CAS  Google Scholar 

  • Rosero-Navarro NC, Paussa L, Andreatta F, Castro Y, Durán A, Aparicio M, Fedrizzi L. Optimisation of hybrid sol–gel coatings by combination of layers with complementary properties for corrosion protection of AA2024. Prog Org Coat. 2010b;69:167–74.

    CAS  Google Scholar 

  • Rosero-Navarro NC, Curioni M, Castro Y, Aparicio M, Thompson GE, Durán A. Glass-like Cerium containing sol–gel coatings for corrosion protection of aluminium and magnesium alloys. Surf Coat Technol. 2011;206:257–64.

    CAS  Google Scholar 

  • Rossi S, Fedel M, Deflorian F, del Vadillo MC. Localized electrochemical techniques: theory and practical examples in corrosion studies. Comptes Rendus Chim. 2008;11:984–94.

    CAS  Google Scholar 

  • Sanctis O, Gómez L, Pellegri N, Parodi C, Marajofsky A, Durán A. Protective glass coatings on metallic substrates. J Non-Cryst Solids. 1990;121:338–43.

    Google Scholar 

  • Sanctis O, Gómez L, Pellegri N, Durán A. Behaviour in hot ammonia atmosphere of SiO2 coated stainless steels produced by a sol–gel procedure. Surf Coat Technol. 1995;70:251–5.

    Google Scholar 

  • Sarmento VHV, Schiavetto MG, Hammer P, Benedetti AV, Fugivara CS, Suegama PH, Pulcinelli SH, Santilli CV. Corrosion protection of stainless steel by polysiloxane hybrid coatings prepared using the sol–gel process. Surf Coat Technol. 2010;204:2689–701.

    CAS  Google Scholar 

  • Sastri VS. Corrosion inhibitors: principles and applications. Chichester: Willey; 1998.

    Google Scholar 

  • Schmidt H, Wolter H. Organically modified ceramics and their applications. J Non-Cryst Solids. 1990;121:428–35.

    CAS  Google Scholar 

  • Schmidt H, Jonschker G, Goedicke S, Mennig MJ. The sol–gel process as a basic technology for anaoparticle-dispersed inorganic–organic composites. J Sol–Gel Sci Technol. 2000;19:39–51.

    CAS  Google Scholar 

  • Schmutz P, Frankel GS. Corrosion study of AA2024-T3 by scanning Kelvin probe force microscopy and in situ atomic force microscopy scratching. J Electrochem Soc. 1998;145:2295–306.

    CAS  Google Scholar 

  • Scully JR. Electrochemical impedance of organic-coated steel: correlation of impedance parameters with long-term coating deterioration. J Electrochem Soc. 1989;136:979.

    CAS  Google Scholar 

  • Senani S, Campazzi E, Villatte M, Druez C. Potentiality of UV-cured hybrid sol–gel coatings for aeronautical metallic substrate protection. Surf Coat Technol. 2013;227:32–7.

    CAS  Google Scholar 

  • Shane M, Mecartney ML. Sol–Gel synthesis of zirconia barrier coatings. J Mater Sci. 1990;25(3):1537–44.

    CAS  Google Scholar 

  • Shchukin DG, Zheludkevich M, Yasakau K, Lamaka S, Ferreira MGS, Mohwald H. Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Adv Mater. 2006;18:1672–8.

    CAS  Google Scholar 

  • Shchukin DG, Lamaka SV, Yasakau KA, Zheludkevich ML, Möhwald H, Ferreira MGS. Active anticorrosion coatings with halloysite nanocontainers. J Phys Chem C. 2008;112:958–64.

    CAS  Google Scholar 

  • Sheffer M, Groysman A, Mandler D. Electrodeposition of sol–gel films on Al for corrosion protection. Corros Sci. 2003;45:2893–904.

    CAS  Google Scholar 

  • Simoes M, Assis OBG, Avaca LA. Some properties of protective sol–gel glass coatings on sintered stainless steels. J Non-Cryst Solids. 2000;273:15–163.

    Google Scholar 

  • Siva T, Mayavan S, Sreejakumari SS, Sathiyanarayanan S. Mesoporous silica based reservoir for the active protection of mild steel in an aggressive chloride ion environment. RSC Adv. 2015;5:39278–84.

    CAS  Google Scholar 

  • Snihirova D, Liphardt L, Grundmeier G, Montemor F. Electrochemical study of the corrosion inhibition ability of "smart" coatings applied on AA2024. J Solid State Electrochem. 2013;17:2183–92.

    CAS  Google Scholar 

  • Stern M, Geary AL. Electrochemical polarization. J Electrochem Soc. 1957;104(1):56.

    CAS  Google Scholar 

  • Sugama T, Cook M. Poly(itaconic acid)-modified chitosan coatings for mitigating corrosion of aluminum substrates. Prog Org Coat. 1991a;38:79–87.

    Google Scholar 

  • Sugama T, Carciello N, Taylor C. Pyrogenic polygermanosiloxane coatings for aluminium substrates. J Non-Cryst Solids. 1991b;134:58–70.

    CAS  Google Scholar 

  • Sugama T, Taylor C. Pyrolysis-induced polymetallosiloxano coatings for aluminium substrates. J Mater Sci. 1992;27:1723–34.

    CAS  Google Scholar 

  • Taylor TA, Bergeron CG, Eppler RA. Ceramic coatings, 9th ed. Metal handbook, vol 5. American Society for Metals; USA; 1982.

    Google Scholar 

  • Trzaskoma-Paulette PP, Nazeri A. Effects of sol–gel coatings on the localized corrosion behaviour of 304 stainless steel. J Electrochem Soc. 1997;144(4):1307–10.

    CAS  Google Scholar 

  • Uhlig HH, Revie RW. Corrosion and corrosion control: an introduction to corrosion science and M.C. engineering. 3rd ed. New York: Wiley; 1985.

    Google Scholar 

  • Vasconcelos DCL, Carvalho JAN, Mantel M, Vasconcelos WL. Corrosion resistance of stainless steel coated with sol–gel silica. J Non-Cryst Solids. 2000;273:135–9.

    CAS  Google Scholar 

  • Vignesh RB, Sethuraman MG. Corrosion protection behaviour of sol–gel derived N, N-dimethylthiourea doped 3-glycidoxypropyltrimethoxysilane on aluminium. Prog Org Coat. 2014a;77:136–41.

    CAS  Google Scholar 

  • Vignesh RB, Sethuraman MG. Enhancement of corrosion protection of 3-glycidoxypropyltrimethoxysilane-based sol–gel coating through methylthiourea doping. J Coat Technol Res. 2014b;11(4):545–54.

    CAS  Google Scholar 

  • Vignesh RB, Edison TNJI, Sethuraman MG. Sol–gel coating with 3-mercaptopropyltrimethoxysilane as precursor for corrosion protection of aluminium metal. J Mater Sci Technol. 2014c;30(8):814–20.

    CAS  Google Scholar 

  • Voevodin NN, Grebasch NT, Soto WS, Kasten L, Grant JT, Arnold FE, Conley MS. An organically modified zirconate film as a corrosion-resistant treatment for aluminium 2024-T3. Prog Org Coat. 2001a;41:287–93.

    CAS  Google Scholar 

  • Voevodin NN, Grebasch NT, Soto WS, Arnold FE, Donley MS. Potentiodynamic evaluation of sol–gel coatings with inorganic inhibitors. Surf Coat Technol. 2001b;140:24–8.

    CAS  Google Scholar 

  • Voevodin NN, Jeffcoate C, Simon L, Khobaib M, Donley M. Characterization of pitting corrosion in bare and sol–gel coated aluminium 2024-T3 alloy. Surf Coat Technol. 2001c;140:29–34.

    CAS  Google Scholar 

  • Wen J, Jordens K, Wilkes GL. Hybrid organic/inorganic coatings for abrasion resistance on plastic and metal substrates. In: Coltrain BK, Sánchez C, Schaefer DW, Wilkes GL, editors. Better ceramics through chemistry VII: organic/inorganic hybrid materials, Materials Research Society Symposium Proceedings, vol. 435. Pittsburgh: Materials Research Society; 1996. p. 207–13.

    Google Scholar 

  • Westcott SL, Kotov NA, Ostrander JW, Mamedov AA, Reust DK, Roark JP. Corrosion protection by multifunctional stratified coatings. NSTI-Nanotechnol. 2004;3:288–91.

    CAS  Google Scholar 

  • Wittmann MW, Leggat RB, Taylor SR. Detection and mapping of defects in organic coatings using local electrochemical impedance methods. J Electrochem Soc. 1999;146:4071–5.

    CAS  Google Scholar 

  • Wittmar A, Caparrotti H, Wittmar M, Veith M. Simple preparation routes for corrosion protection hybrid sol–gel coatings on AA 2024. Surf Interf Anal. 2012a;44:70–7.

    CAS  Google Scholar 

  • Wittmar A, Wittmar M, Ulrich A, Caparrotti H, Veith M. Hybrid sol–gel coatings doped with transition metal ions for the protection of AA 2024-T3. J Sol–Gel Sci Technol. 2012b;61:600–12.

    CAS  Google Scholar 

  • Xiao H, Mansfeld FJ. Evaluation of coating degradation with electrochemical impedance spectroscopy and electrochemical noise analysis. J Electrochem Soc. 1994;141:2332–37.

    Google Scholar 

  • Yasakau KA, Zheludkevich ML, Karavai OV, Ferreira MGS. Influence of inhibitor addition on the corrosion protection performance of sol–gel coatings on AA2024. Prog Org Coat. 2008;63:352–61.

    CAS  Google Scholar 

  • Yasakau KA, Carneiro J, Zheludkevich ML, Ferreira MGS. Influence of sol–gel process parameters on the protection properties of sol–gel coatings applied on AA2024. Surf Coat Technol. 2014;246:6–16.

    CAS  Google Scholar 

  • Zaharescu M, Predoana L, Barau A, Raps D, Gammel F, Rosero-Navarro NC, Castro Y, Durán A, Aparicio M. SiO2 based hybrid inorganic–organic films doped with TiO2–CeO2 nanoparticles for corrosion protection of AA2024 and Mg-AZ31B alloys. Corros Sci. 2009;51:1998–2005.

    CAS  Google Scholar 

  • Zheludkevich ML, Miranda SL, Ferreira MGS. Sol–gel coatings for corrosion protection of metals. J Mater Chem. 2005a;15:5099–111.

    CAS  Google Scholar 

  • Zheludkevich ML, Serra R, Montemor MF, Ferreira MGS. Oxide nanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors. Electrochem Commun. 2005b;7:836–40.

    CAS  Google Scholar 

  • Zheludkevich ML, Serra R, Montemor MF, Yasakau KA, Miranda Salvado IM, Ferreira MGS. Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3 Corrosion protection performance. Electrochim Acta. 2005c;51:208–17.

    CAS  Google Scholar 

  • Zheludkevich ML, Yasakau KA, Poznyak SK, Ferreira MGS. Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy. Corros Sci. 2005d;47:3368–83.

    CAS  Google Scholar 

  • Zheludkevich M, Shchukin DG, Yasakau KA, Mohwald H, Ferreira MGS. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chem Mater. 2007;19:402–11.

    CAS  Google Scholar 

  • Zhong X, Li Q, Hu J, Yang X, Luo F, Dai Y. Effect of cerium concentration on microstructure, morphology and corrosion resistance of cerium–silica hybrid coatings on magnesium alloy AZ91D. Prog Org Coat. 2010;69:52–6.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Durán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Durán, A., Castro, Y., Conde, A., de Damborenea, J.J. (2018). Sol-Gel Protective Coatings for Metals. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32101-1_70

Download citation

Publish with us

Policies and ethics