Skip to main content
Log in

New sol–gel precursors for binary oxides of antimony, Sb2O3 (senarmonite) and α-Sb2O4: synthesis and characterization of some ketoximate modified antimony(III) alkoxides

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hydrolysis of pure Sb(OPri)3 by sol–gel method followed by sintering at 500 °C yields microcrystallites of Sb2O3 (senarmonite phase). Under similar conditions bimetallic alkoxide, [NaSb(OPri)4], yields a mixture of binary oxides Sb2O3 and Sb2O4. Chemical modification of Sb(OPri)3 with oximes forms monomeric products of the type [Sb(OPri)3−n {ON=C(CH3)R} n ] {where R = CH3, n = 1 [1]; n = 2 [2]; n = 3 [3]; R = 2-C5H4N, n = 1 [4]; n = 2 [5]; n = 3 [6]; R = 2-C4H3O, n = 1 [7]; n = 2 [8]; n = 3 [9]; R = 2-C4H3S, n = 1 [10]; n = 2 [11]; n = 3 [12]}. The liquid products [1–3, 7 & 10] were purified by distillation while the solids by recrystallization. All these products were characterized by elemental analyses, IR, NMR (1H and 13C{1H}) and representative derivatives [1], [2] and [3] by FAB mass studies. On the basis of these studies, a distorted pyramidal structure for all the derivatives may be assumed in the solution state containing an end-on coordination of oximes with the metal atom. Hydrolysis of the distilled precursors [1], [2] and [3] under sol–gel conditions yields pure nano-sized α-Sb2O4. All the oxides were characterized by XRD, SEM and EDX analysis exhibiting minimum particle size for the oxide obtained from the precursor [3].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kokkalas DE, Bikiaris DN, Karayannidis GP (2003) J Appl Poly Sci 55:787

    Article  Google Scholar 

  2. Bryngelsson H, Eskhult J, Nyholm L, Herranen M, Alm O, Edström K (2007) Chem Mater 19:1170

    Article  CAS  Google Scholar 

  3. Tigau N, Ciupina V, Prodan G (2006) J Optoelectro Adv Mater 8:37

    CAS  Google Scholar 

  4. Ballistreri A, Foti S, Montaudo G, Pappalardo S, Scamporrino E (2003) J Polym Sci: Polym Chem Edn 17:2469

    Google Scholar 

  5. Brebu M, Jakab E, Sakata Y (2007) J Anal Appl Pyrolysis 79:346

    Article  Google Scholar 

  6. Papaspyrides CD, Pavlidou S, Vouyiouka SN (2009) J Mater: Design Appl 223:91

    Google Scholar 

  7. Whitten AE, Dittrich B, Spackman MA, Turner P, Brown TC (2004) Dalton Trans 23

  8. Dik J, Janssens K, Snickt GVD, Loeff LVD, Rickers K, Cotte M (2008) Anal Chem 80:6436

    Article  CAS  PubMed  Google Scholar 

  9. Amador J, Puebla EG, Monge MA, Rasines I, Valero CR (1988) Inorg Chem 27:1367

    Article  CAS  Google Scholar 

  10. Castillo R, Dewaele K, Ruiz P, Delmon B (1997) Appl Catal A: General 153:L1

    Article  CAS  Google Scholar 

  11. Ohminami Y, Suzuki S, Matsudaira N, Nomura T, Chun WJ, Ijima K, Nakamura M, Mukasa K, Nagase M, Asakura K (2005) Bull Chem Soc Jpn 78:435

    Article  CAS  Google Scholar 

  12. D’Ippolito SA, Bañares MA, Fierro JLG, Pieck CL (2008) Catal Lett 122:252

    Article  Google Scholar 

  13. Zhang Y, Li G, Zhang J, Zhang L (2004) Nanotechnol 15:762

    Article  CAS  ADS  Google Scholar 

  14. Ye C, Wang G, Kong M, Zhang L (2006) J Nanomater 2006:1

    Article  MATH  Google Scholar 

  15. Deng Z, Tang F, Chen D, Meng X, Cao Li, Zou B (2006) J Phys Chem B 110:18225

    Article  CAS  PubMed  Google Scholar 

  16. Hu Y, Zhang H, Yang H (2007) J Alloy Compd 428:327

    Article  CAS  Google Scholar 

  17. Orosel D, Balog P, Liu H, Qian J, Jansen M (2005) J Solid State Chem 178:2602

    Article  CAS  ADS  Google Scholar 

  18. Hutagalung SD, Yaacob KA, Yeow LB (2006) Solid State Sci Technol 14:153

    Google Scholar 

  19. Baumann SO, Bendova M, Fric H, Puchberger M, Visinescu C, Schubert U (2009) Eur J Inorg Chem 3333

  20. Fortner KC, Bigi JP, Brown SN (2005) Inorg Chem 44:2803

    Article  CAS  PubMed  Google Scholar 

  21. Agarwal S, Bohra R, Nagar M, Raju VS (2007) J Chem Res 713

  22. Sharma N, Sharma V, Nagar M, Bohra R, Kaushik A, Mathur S, Barth S (2008) J Coord Chem 61:2234

    Article  CAS  Google Scholar 

  23. Dhayal V, Atal MK, Choudhary BL, Nagar M, Bohra R (2009) J Sol-Gel Sci Technol 52:97

    Article  CAS  Google Scholar 

  24. Kessler VG, Spijksma GI, Seisenbaeva GA, Håkansson S, Blank DHA, Bouwmeester HJM (2006) J Sol-Gel Sci Technol 40:163

    Article  CAS  Google Scholar 

  25. Kessler VG (2009) J Sol-Gel Sci Technol 51:264

    Article  CAS  Google Scholar 

  26. Mehrotra RC, Rai AK, Bohra R (1974) J Indian Chem Soc 51:304

    CAS  Google Scholar 

  27. Gupta A, Sharma RK, Bohra R, Jain VK, Drake JE, Hursthouse MB, Light ME (2002) Polyhedron 21:2387

    Article  CAS  Google Scholar 

  28. Sharma V, Agarwal S, Bohra R, Ratnani R, Drake JE, Bingham AL, Hursthouse MB, Light ME (2006) Inorg Chim Acta 359:1404

    Article  CAS  Google Scholar 

  29. Pathak M, Bohra R, Mehrotra RC, Lorenz IP, Piotrowski H (2003) Z Anorg Allg Chem 629:2493

    Article  CAS  Google Scholar 

  30. Sharma V, Sharma V, Bohra R, Drake JE, Hursthouse MB, Light ME (2007) Inorg Chim Acta 360:2009

    Article  CAS  Google Scholar 

  31. Dhayal V, Sharma N, Sharma V, Bohra R, Drake JE, Macdonald CLB (2007) Polyhedron 26:3168

    Article  CAS  Google Scholar 

  32. Sharma V, Sharma V, Bohra R (2007) Trans Met Chem 32:442

    Article  CAS  Google Scholar 

  33. Sharma N, Sharma V, Bohra R, Raju VS (2007) Appl Organometal Chem 21:763

    Article  CAS  Google Scholar 

  34. Schubert U (2007) Acc Chem Res 40:730

    Article  CAS  PubMed  Google Scholar 

  35. Vogel AI (1989) Textbook of quantitative inorganic analysis, 5th edn

  36. Dubrovina OD, Uchenya ZK (1957) Chem Abstr 51:6534i

    Google Scholar 

  37. Arthar T, Bohra R, Mehrotra RC (1987) Main Group Met Chem 10:399

    Google Scholar 

  38. Hückel W, Sachs M (1932) Ann Chem 498:176

    Google Scholar 

  39. Nerdel F, Huldschinsky I (1953) Chem Ber 86:1005

    Article  CAS  Google Scholar 

  40. Shriner RL, Fuson RC, Curtin DY (1956) The systematic identification of organic compounds. Wiley, NewYork

    Google Scholar 

  41. Mehrotra RC, Rai AK, Singh A, Bohra R (1975) Inorg Chim Acta 13:91

    Article  CAS  Google Scholar 

  42. Gupta A, Sharma RK, Bohra R, Jain VK, Drake JE, Hursthouse MB, Light ME (2002) J Organomet Chem 645:118

    Article  CAS  Google Scholar 

  43. Sharma V, Sharma RK, Bohra R, Ratnani R, Jain VK, Drake JE, Hursthouse MB, Light ME (2002) J Organomet Chem 651:98

    CAS  Google Scholar 

  44. Nath M, Goyal S (2002) Phosphorus Sulfur Silicon 177:447

    Article  CAS  Google Scholar 

  45. Bradley DC, Abd-El-Halim FM, Mehrotra RC, Wardlaw W (1952) J Chem Soc 4609

Download references

Acknowledgements

We are thankful to CSIR and DST-New Delhi for financial support. We thank CSMCRI, Bhavnagar for TGA and IIT, Roorkee for SEM coupled EDX analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Bohra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, N., Nagar, M. & Bohra, R. New sol–gel precursors for binary oxides of antimony, Sb2O3 (senarmonite) and α-Sb2O4: synthesis and characterization of some ketoximate modified antimony(III) alkoxides. J Sol-Gel Sci Technol 54, 119–128 (2010). https://doi.org/10.1007/s10971-010-2166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2166-0

Keywords

Navigation