Skip to main content
Log in

Synthesis of [Si]-MCM-41 from TEOS and water glass: the water glass-enhanced condensation of TEOS under alkaline conditions

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous [Si]-MCM-41 molecular sieve systems have been fabricated by aging silica gels in CTAB both at RT and under hydrothermal conditions with or without stirring. For the synthesis involving water glass as a SiO2 source, optimal conditions (100 °C, pH 10, crystallization time 2–3 days) gave reproducible, highly ordered [Si]-MCM-41 materials in multi gram scale with high lattice parameter values and BET surface areas. The synthesis with TEOS as silica source produced an inferior quality material. A novel synthesis route involving the use of mixtures of the two precursors gave [Si]-MCM-41 with improved structural (XRD) and microstructural (HRTEM) long-range order. Addition of small amounts of water glass to a TEOS-based synthesis gel under stirred conditions produced [Si]-MCM-41 with excellent mesoporosity, long-range microstructural order, XRD and S BET properties. These properties are reminiscent of those for materials obtained from water glass as a sole SiO2 source. The advantage of this route is that it gave high-quality materials at relatively lower temperatures (80 °C) and shorter crystallization times (6 h) after 21 h aging at RT. The variation of the XRD d 100 peak position, BET and HRTEM properties with [TEOS]/[water glass] ratio revealed that a ratio = 3.95 gave optimal production of the highly ordered materials. The data suggests that water glass acts as a structure-directing agent for the TEOS and is incorporated into the final structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Everret DH (1972) Pure Appl Chem 31:579–638

    Google Scholar 

  2. Occelli ML, Robson HE (eds) (1992) Expanded clays and other microporous solids. In: Synthesis of microporous materials, 5th edn. Van Nostrand Reinhold, New York

  3. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Bull Chem Soc Jpn 63:988–992

    Article  CAS  Google Scholar 

  4. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710–712

    Article  CAS  ADS  Google Scholar 

  5. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834–10843

    Article  CAS  Google Scholar 

  6. Corma A (1997) Chem Rev 97:2373–2420

    Article  CAS  PubMed  Google Scholar 

  7. Xiao N, Wang L, Liu S, Zou Y, Wang C, Ji Y, Song J, Li F, Meng X, Xiao FS (2009) J Mater Chem 19:661–665

    Article  CAS  Google Scholar 

  8. Goworek J, Kierys A, Gac W, Borowska A, Kusak R (2009) J Therm Anal Calorim 96(2):375–382

    Article  CAS  Google Scholar 

  9. Edler KJ, White JW (1995) J Chem Soc Chem Commun (2):155–156

  10. Matijesic A, Voegtlin AC, Patarin J, Guth JL, Huve L (1996) Chem Commun (10):1123–1124

  11. Lin HP, Cheng S, Mou CY (1996) J Chin Chem Soc 43:375–378

    CAS  Google Scholar 

  12. Voegtlin AC, Matijesic A, Patarin J, Sauerland C, Grillet Y, Huve L (1997) Microporous Mater 10:137–147

    Article  CAS  Google Scholar 

  13. Voegtlin AC, Ruch F, Guth JL, Patarin J, Huve L (1997) Microporous Mater 9:95–105

    Article  CAS  Google Scholar 

  14. Cai Q, Lin WY, Xiao FS, Pang WQ, Chen XH, Zhou BS (1999) Microporous Mesoporous Mater 32:1–15

    Article  CAS  Google Scholar 

  15. Linssen T, Cassiers K, Cool P, Vansant EF (2003) Adv Colloid Interface Sci 103:121–147

    Article  CAS  PubMed  Google Scholar 

  16. Wang LZ, Shi JL, Tang FQ, Yu J, Ruan ML, Yan DS (1999) J Mater Chem 9:643–645

    Article  CAS  Google Scholar 

  17. Lin HP, Liu SB, Mou CY, Tang CY (1999) Chem Commun (7):583–584

  18. Eimer GA, Chanquia CM, Sapag K, Herrero ER (2008) Microporous Mesoporous Mater 116:670–676

    Article  CAS  Google Scholar 

  19. Gervasini A, Messi C, Carniti P, Ponti A, Ravasio N, Zaccheria F (2009) J Catal 262:224–234

    Article  CAS  Google Scholar 

  20. Huh S, Wiench JW, Yoo JC, Pruski M, Lin VSY (2003) Chem Mater 15:4247–4256

    Article  CAS  Google Scholar 

  21. Parfenov VA, Kirik SD (2003) Chem Sustain Dev 11:735–740

    Google Scholar 

  22. Kirik SD, Belousov OV, Parfenov VA, Vershinina MA (2005) Glass Phys Chem 31(4):439–451

    Article  CAS  Google Scholar 

  23. Martins L, Cardoso D (2007) Microporous Mesoporous Mater 106:8–16

    Article  CAS  Google Scholar 

  24. Chen H, He J (2008) Chem Commun (37):4422–4424

  25. Yang Q, Liu J, Zhang L, Li C (2009) J Mater Chem 19:1945–1955

    Article  CAS  Google Scholar 

  26. Liu J, Feng X, Fryxell GE, Wang LQ, Kim AY, Gong M (1998) Chem Eng Technol 21(1):97–100

    Article  CAS  Google Scholar 

  27. Mattigod SV, Feng X, Fryxell GE, Liu J, Gong M (1999) Sep Sci Technol 34(12):2329–2345

    Article  CAS  Google Scholar 

  28. Yantasee W, Lin Y, Fryxell GE, Busche BJ et al (2003) Sep Sci Technol 38(15):3809–3825

    Article  CAS  Google Scholar 

  29. Fryxell GE, Wu H, Lin Y, Shaw WJ, Birnbaum JC, Linehan JC et al (2004) J Mater Chem 14(22):3356–3363

    Article  CAS  Google Scholar 

  30. Bou-Maroun E, Goetz-Grandmont GJ, Boos A (2006) Colloids Surf A 287(1–3):1–9

    Article  CAS  Google Scholar 

  31. Qu F, Zhu G, Lin H, Zhang W, Sun J, Li S, Qiu S (2006) J Solid State Chem 179(7):2027–2035

    Article  CAS  ADS  Google Scholar 

  32. Vallet-Regi M, Balas F, Arcos D (2007) Angew Chem Int Ed 46(40):7548–7558

    Article  CAS  Google Scholar 

  33. Manzano M, Aina V, Areán CO, Balas F, Cauda V, Colilla M, Delgado MR, Vallet-Regi M (2008) Chem Eng J 137(1):30–37

    Article  CAS  Google Scholar 

  34. Izquierdo-Barba I, Souza E, Doadrio JC, Doadrio AL, Pariente JP, Martinez A, Babonneau F, Vallet-Regi M (2009) J Sol-Gel Sci Technol 50:421–429

    Article  CAS  Google Scholar 

  35. Brady R, Woonton B, Gee ML, O’Connor AJ (2008) Innov Food Sci Emerg Technol 9(2):243–248

    Article  CAS  Google Scholar 

  36. Cejka J, Mintova S (2007) Catal Rev 49(4):457–509

    CAS  Google Scholar 

  37. Mbaraka IK, Shanks BH (2006) JAOCS 83(2):79–91

    Article  CAS  Google Scholar 

  38. Chen CY, Li HX, Davis ME (1993) Microporous Mater 2:17–26

    Article  Google Scholar 

  39. Kim JM, Kwak JH, Jun S, Ryoo R (1995) J Phys Chem 99:16742–16747

    Article  CAS  Google Scholar 

  40. Kim JM, Ryoo R (1996) Bull Korean Chem Soc 17:66–68

    CAS  Google Scholar 

  41. Ryoo R, Jun S (1997) J Phys Chem B 101:317–320

    Article  CAS  Google Scholar 

  42. Kim JM, Jun S, Ryoo R (1999) J Phys Chem B 103:6200–6205

    Article  CAS  Google Scholar 

  43. Che LY, Jaenicke S, Chuah GK (1997) Microporous Mater 12(4):323–330

    Article  Google Scholar 

  44. Liu Y, Pinnavaia TJ (2002) J Mater Chem 12:3179–3190

    Article  CAS  Google Scholar 

  45. Mokaya R (2001) Chem Commun (10): 933–934

  46. Mokaya R (2001) Chem Commun (7):633–634

  47. Lin HP, Mou CY (1996) Science 273:765–768

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Lin HP, Cheng S, Mou CY (1997) Microporous Mater 10:111–121

    Article  CAS  Google Scholar 

  49. Lin HP, Kuo CL, Wan BZ, Mou CY (2002) J Chin Chem Soc 49:899–906

    CAS  Google Scholar 

  50. Lin HP, Cheng YR, Lin CR, Li FY, Chen CL, Wong ST, Cheng SF, Liu SB, Wan BZ, Mou CY, Tang CY, Lin CY (1999) J Chin Chem Soc 46:495–505

    CAS  Google Scholar 

  51. Liu J, Yang Q, Zhao XS, Zhang L (2007) Microporous Mesoporous Mater 106:62–67

    Article  CAS  Google Scholar 

  52. Wang A, Kabe T (1999) Chem Commun (20):2067–2068

  53. Cheng C-F, Zhou W, Park DH, Klinowski J, Hargreaves M, Gladden LF (1997) J Chem Soc Faraday Trans 93(2):359–363

    Article  CAS  Google Scholar 

  54. Ryoo R, Kim JM (1995) J Chem Soc Chem Commun 711–712

  55. Niibori Y, Kunita M, Tochiyama O, Chida T (2000) J Nucl Sci Technol 37(4):349–357

    Article  CAS  Google Scholar 

  56. Vartuli JC, Schmitt KD, Kresge CT, Roth WJ, Leonowicz ME, McCullen SB, Hellring SD, Beck JS, Schlenker JL, Olson DH, Sheppard EW (1994) Chem Mater 6:2317–2326

    Article  CAS  Google Scholar 

  57. Huo Q, Margolese DI, Ciesla U, Feng P, Gier TE, Sieger P, Leon R, Petroff PM, Schuth F, Stucky GD (1994) Nature 368:317–321

    Article  CAS  ADS  Google Scholar 

  58. Mokaya R, Zhou W, Jones W (2000) J Mater Chem 10(5):1139–1145

    Article  CAS  Google Scholar 

  59. Mokaya R (1999) J Phys Chem B 103:10204–10208

    Article  CAS  Google Scholar 

  60. Mokaya R, Zhou W, Jones W (1999) Chem Commun (1):51–52

Download references

Acknowledgments

The authors would like to thank Professor A. K. Datye, Mangesh Bore and Kelvin Lester (University of New Mexico, USA) for their kind assistance with HRTEM imaging and the time spent in their laboratory as a doctoral student. Financial support from the NRF (National Research Foundation) and the granting of a PhD study leave by the University of Limpopo are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Coville.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokhonoana, M.P., Coville, N.J. Synthesis of [Si]-MCM-41 from TEOS and water glass: the water glass-enhanced condensation of TEOS under alkaline conditions. J Sol-Gel Sci Technol 54, 83–92 (2010). https://doi.org/10.1007/s10971-010-2161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2161-5

Keywords

Navigation