Skip to main content
Log in

Viscoelastic characterization of TEOS sols in three different solvents when DBTL is used as polycondensation catalyst

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The gelation process of TEOS sols in three different solvents using di-n-butyltin dilaurate (DBTL) as polycondensation catalyst has been investigated. Sol compositions were similar to those employed in the field of stone consolidation for the conservation of historical buildings. Three different systems were studied: TEOS in ethanol (S-EtOH) which was tested to explain gelation in protic solvents; TEOS in a mixture of methylethylketone/acetone (S-MA) to represent aprotic solvents; and TEOS in a blend of MEK/ethanol (S-ME) for comparison of a system with properties intermediate between protic and aprotic solvents. The gelation process was studied by measuring the viscoelastic behavior near the gelation point (GP). A scaling exponent (Δ) was determined for the elastic modulus, G(ω)′ and the viscous modulus, G′′(ω), which both follow the same power law, ωΔ, at GP. The fractal dimension, df, was calculated from the scaling exponent, Δ, for each TEOS-DBTL system. For each type of solvent studied, values of Δ from 0.34 to 0.53 with df of 1.9–2.2 were obtained. The results suggest that DBTL leads to a TEOS polycondensation mechanism similar to that observed for a base-catalyst system. However, the change in df suggests that there is a significant effect of the solvent on aggregation mechanisms of the gelation process. A diffusion limited cluster–cluster aggregation mechanism (DLCCA) was observed when ethanol was used as protic solvent, while a reaction limited cluster–cluster aggregation mechanism (RLCCA) was observed for MEK/acetone (aprotic solvent).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Iler RK (1979) The Chemistry of Silica. John Wiley & sons, New York, US

    Google Scholar 

  2. Brinker CJ, Scherer GW (1990) Sol–Gel Science. Academic Press INC, San Diego CA, USA

    Google Scholar 

  3. Hench LL, West JK (1990) Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  4. Sperling LH (1992) Introduction of Physical Polymer Science, 2a edn. Wiley, USA

    Google Scholar 

  5. Bouchaud E, Delsanti M, Adam M, Daoud M, Durand D (1986) J Physique 47:1273–1277

    Article  CAS  Google Scholar 

  6. Woignier T, Phalippou J, Sempere R, Pelous J (1988) J Phys France 49:289–293

    Article  CAS  Google Scholar 

  7. Djabourov M, Leblond J, Papon P (1988) J Phys France 49:333–334

    Article  CAS  Google Scholar 

  8. de Candia A, Del Gadoa E, Fierro A, Sator N, Conigli A (2005) Physica A 38(2–4):239–248

    Google Scholar 

  9. Jokinen M, Györvary E, Rosenholm JB (1998) J Colld Inter Sci 141:205–216

    CAS  Google Scholar 

  10. Martin JE, Adolf D, Wilcoxon JP (1989) Physical Review A 39(3):1325–1332

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Barnes HA, Hutton JF, Walters K (2001) An Introduction to Rheology. Elsevier, The Netherlands

    Google Scholar 

  12. Hodgson DF, Amis EJ (1990) Macromolecules 23:2512–2519

    Article  CAS  ADS  Google Scholar 

  13. Hodgson DF, Amis EJ (1991) J Non-Cryst Solds 131:913–920

    Article  ADS  Google Scholar 

  14. Naskar MK (2005) J Materials Science 40:1309–1311

    Article  CAS  ADS  Google Scholar 

  15. Surivet F, Lam TM, Pascault JP, Tho PQ (1992) Macromolecules 25:4309–4320

    Article  CAS  ADS  Google Scholar 

  16. Wheeler G (2005) Alkoxysilanes and the Consolidation of Stone. The Getty Conservation Institute, Los Angeles CA, USA

    Google Scholar 

  17. Noll W (1968) Chemistry and Technology of Silicones. Academic press, New York

    Google Scholar 

  18. Van der Weij FW (1980) Macromol Chem 181:2541–2548

    Article  Google Scholar 

  19. Salazar-Hernández C, Zarraga R, Alonso S, Sugita S, Calixto S, Cervantes J (2009) J Sol-Gel Sci Technol 49(3):301–310

    Article  Google Scholar 

  20. Winter HH (1987) Polym Eng Sci 27(22):1698–1702

    Article  CAS  Google Scholar 

  21. Payró ER, Llacuna JL (2006) J Non-Cryst Solds 352:2220–2225

    Article  Google Scholar 

  22. Brus J, Kotlik P, Karhan J (1997) Collect Czech Chem Commun 62:442–456

    Article  CAS  Google Scholar 

  23. Davies AG (1997) Organotin Chemistry. Wiley-VCH, Germany

    Google Scholar 

  24. Craievich A, Santos DI, Aegerter M, Lours T, Zarzyck J (1988) J Non-Cryst Solds 100:424–428

    Article  CAS  ADS  Google Scholar 

  25. Woignier T, Phalippou J, Vacher R, Pelous J, Courtens E (1990) J Non-Cryst Solds 121:198–204

    Article  CAS  ADS  Google Scholar 

  26. Vacher R, Woignier T, Pelous J, Courtens E (1988) Physical Review B 37(11):6500–6505

    Article  CAS  ADS  Google Scholar 

  27. Méndez-Vivar J (2006) J Sol-Gel Sci Technol 38(2):159–164

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the Consejo Nacional de Ciencia y Tecnología (CONACYT-Mexico) through grant 25397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Cervantes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar-Hernández, C., Cervantes, J. & Alonso, S. Viscoelastic characterization of TEOS sols in three different solvents when DBTL is used as polycondensation catalyst. J Sol-Gel Sci Technol 54, 77–82 (2010). https://doi.org/10.1007/s10971-010-2160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2160-6

Keywords

Navigation