Skip to main content
Log in

The interaction of dibutyltin dilaureate with tetraethyl orthosilicate in sol-gel systems

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sols composed of dibutyltin dilaureate (DTL) and tetraethyl orthosilicate (TEOS) were prepared using a mixture of methyl ethyl ketone (MEK) and acetone as the solvent in order to study the interaction between the oligomeric Sn and Si species. The hydrolysis molar ratio r (r=nH2O/nM (M: Si, Sn or Si+Sn) was 2. The use of an acid or basic catalyst was avoided, as the sols are intended to be used in the formulation of potential stone consolidants. The sols were studied by several spectroscopic techniques including Small Angle X-ray Scattering (SAXS), 29Si and 119Sn NMR, Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD). According to the spectroscopic results the lauric acid produced by the hydrolysis of DTL modifies the condensation path of the Si species, leading to the formation of two types of oligomeric chains: linear swollen and multiparticle diffusion-limited aggregates, depending on the molar ratio Sn/Si. The 29Si NMR results indicated that the hydrolysis of DTL catalizes the condensation of the Si species, giving as a result higher condensation extents of the Si species in the Sn-Si sols compared to a pure Si sol. Based on the Radial Distribution functions (RDF) and the FTIR results, heterocondensation occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.P. Plueddemann, Silane Coupling Agents (Plenum Press, New York, 1982).

    Google Scholar 

  2. C.J. Brinker and G.W. Scherer, Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA, 1990).

    Google Scholar 

  3. L.L. Hench and J.K. West (Eds.), Chemical Processing of Advanced Materials (John Wiley & Sons, Inc., NY, 1992).

    Google Scholar 

  4. L.V. Interrante and M.J. Hampden-Smith (Eds.), Chemistry of Advanced Materials (Wiley-VCH, NY, 1998).

    Google Scholar 

  5. S.J. Blunden, P.A. Cusak, and R. Hill, The Industrial Uses of Tin Chemicals (The Royal Society of Chemistry, London, 1985).

    Google Scholar 

  6. M.J. Hampden-Simith, T.A. Wark, and C.J. Brinker, Coord. Chem. Rev. 112, 81 (1992).

    Article  Google Scholar 

  7. A.G. Davies, Organotin Chemistry (VCH, Germany, 1997).

    Google Scholar 

  8. F.W. Van der Weij, Makromol. Chem. 181, 2541 (1980).

    Article  CAS  Google Scholar 

  9. R. Dal Maschio, S. Diré, R. Campostrini, G.D. Soraru, G. Carturan, in Materials Research Society Symposium Proceedings, edited by B.J.J. Zelinski, C.J. Brinker, D.E. Clark, and D.R. Ulrich. (MRS, USA, 1990), vol.180, p. 351.

    Google Scholar 

  10. P.G Harrison, C.C. Perry, D.A. Creaser, X. Li, D.J. Blake, in Chemistry of Advanced Materials (Wiley-VCH, NY, 1998), [4], p. 187.

  11. C.-S. Yang, Q. Liu, S.M. Kauzlarich, and B. Phillips, Chem. Mater. 12, 983 (2000).

    Article  CAS  Google Scholar 

  12. O. Glatter, Acta Phys. Austr. 83, 47 (1977).

    Google Scholar 

  13. O. Glatter, J. Appl. Crystallogr. 10, 415 (1977).

    Article  Google Scholar 

  14. H.P. Klug and L.E. Alexander, in X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn. (John Wiley & Sons, New York, 1974).

    Google Scholar 

  15. M. Magini and A.J. Cabrini, Appl. Crystallogr. 5(14), 14 (1972).

    Article  CAS  Google Scholar 

  16. D.W. Schaefer and K.D. Keefer, in Fractals in Physics edited by L. Pietronero and E. Tosatti (North-Holland, Amsterdam 1986), p. 39–45.

    Google Scholar 

  17. Li Ou and A.B. Seddon, J. Non-Cryst. Solids 210, 192 (1997).

    Article  Google Scholar 

  18. C.J. Pouchert (Ed.), The Aldrich Library of FTIR spectra, 1st edn. (Aldrich Chem. Co., Milwaukee, WI, 1985).

  19. A.B.J. Wojcik and L.C. Klein, J. Sol-Gel Sci. Tech. 4(57), 57 (1995).

    Article  CAS  Google Scholar 

  20. M. Pauthé, J. Phalipou, R. Corriu, D. Leclercq, and A. Vioux, J. Non-Cryst. Solids 113, 23 (1989).

    Google Scholar 

  21. Nakamoto, in Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1978).

    Google Scholar 

  22. J.M. Brown, A.C. Chaoman, R. Harper, D.J. Mowthorpe, A.G. Davies, and P.J. Smith, J. Chem. Soc., Dalton Trans. 338 (1972).

  23. J. Méndez-Vivar, R. Mendoza-Serna, and L. Valdez-Castro, J. Non-Cryst. Solids 288, 200 (2001).

    Article  Google Scholar 

  24. G. Socrates, Infrared Characteristic Group Frequencies (Wiley, UK, 1980).

    Google Scholar 

  25. E.S. Goins, Alkoxysilane Consolidants: The Effect of the Stone Substrate on the Polymerization Process. PhD Thesis (University College, London, 1995), p. 166.

  26. D. Lien-Vien, N.B. Colthup, W.G. Fateley, and J.G. Graselli, The Handbook of Infrared and Raman Characteristic Frequencies of Inorganic Molecules (Academic Press, USA, 1991).

    Google Scholar 

  27. Joint Committee of Powder Diffraction Standard (JCPDS) files.

  28. S. Prabakar, R.A. Assink, N.K. Raman, C.J. Brinker, in Materials Research Society Symposium Proceedings edited by A.K. Cheetham, C.J. Cheetham, M.L. Brinker, C. Mecartney, Sanchez, MRS Pittsburgh PA, 1994), vol. 346, p. 979.

    Google Scholar 

  29. L. Pauling, The Nature of Chemical Bond (Cornell University Press, NY, 1960).

    Google Scholar 

  30. E.Bosch, et al., US Patent 3,955,988, May 11, 1976.

  31. G. Wheeler, Alkoxysilanes and the Consolidation of Stone (The Getty Conservation Institute, Los Angeles CA, USA 2005), p. 58.

    Google Scholar 

  32. C.A. Grissom, Art and Archaeology Technical Abstracts 18(1), 150 (1981).

    Google Scholar 

  33. G.G. Amoroso and V. Fascina, Stone Decay and Conservation (Elsevier, New York, 1983).

    Google Scholar 

  34. G. Wheeler, J. Dinsmore, L.J. Ransick, A.E. Charola, and R.J. Koestler, Studies in Conservation 29(1), 42 (1984)

    Article  CAS  Google Scholar 

  35. S.Z. Lewin and G. Wheeler, in Proc. Fifth International Congress on the Deterioration and Conservation of Stone, edited by G. Felix, and V. Furlan, Laussane (Presses Polytechniques Romandes, 1985) p. 831.

    Google Scholar 

  36. S.M. Bradley, Geological Curator 4(7), 427 (1986).

    Google Scholar 

  37. A.E. Charola and R.J. Koestler, Scanning Electron Microscopy 2, 479 (1986).

    Google Scholar 

  38. G. Scherer and G. Wheeler, in Fourth International Symposium on the Conservation of Monuments in the Mediterranean Basin edited by A. Moropoulou, F. Zezza, E. Kollias, I. Papachristodoulou, (Technical Chamber of Greece, Athens, 1997), vol.3, p. 355.

    Google Scholar 

  39. J. Cervantes, G. Mendoza-Díaz, D.E. Alvarez-Gasca, A. Martínez-Richa, Solid State Nuclear Magnetic Resonance 13(4), 263 (1999).

    Article  CAS  Google Scholar 

  40. G. Wheeler, J. Méndez-Vivar, E.S. Goins, S.A. Fleming, C.J. Brinker, in Proc. Ninth International Congress on Deterioration and Conservation of Stone edited by V. Fassina, Venice (Elsevier, 2000), p. 541.

    Google Scholar 

  41. A.B. Oliver, APT Bulletin 33(2/3), 39 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Méndez-Vivar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Méndez-Vivar, J. The interaction of dibutyltin dilaureate with tetraethyl orthosilicate in sol-gel systems. J Sol-Gel Sci Technol 38, 159–166 (2006). https://doi.org/10.1007/s10971-006-6351-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-6351-0

Keywords

Navigation