Skip to main content

Advertisement

Log in

Aminosilane as an effective binder for hydroxyapatite-gelatin nanocomposites

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Aminosilane has been explored as an alternative chemical linker to facilitate the binding and solidification of hydroxyapatite-gelatin nanocomposite at room temperature, which was synthesized using co-precipitation method in the presence of gelatin. This aminosilane treatment was found effective at low concentration (~25 μL/mL) and the solidification and dehydration of hydroxyapatite-gelatin slurry completes within hours depending on the amount of aminosilane. The resulting sample exhibits compressive strength of 133 MPa, about 40% higher than glutaraldehyde treated samples, and shows good biocompatibility based on cell adhesion, proliferation, alkaline phosphate synthesis, and mineralization studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Green D, Walsh D, Mann S, Oreffo ROC (2002) The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone 30:810–815

    Article  CAS  PubMed  Google Scholar 

  2. Boskey AL (1998) Will biomimetics provide new answers for old problems of calcified tissues? Calcif Tissue Int 63:179–182

    Article  CAS  PubMed  Google Scholar 

  3. Murugan R, Ramakrishna S (2005) Development of nanocomposites for bone grafting. Compos Sci Technol 65:2385–2406

    Article  CAS  Google Scholar 

  4. Wahl DA, Czernuszka JT (2006) Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 11:43–56

    CAS  PubMed  Google Scholar 

  5. Wu TJ, Huang HH, Lan CW, Lin CH, Hsu FY, Wang YJ (2004) Studies on the microspheres comprised of reconstituted collagen and hydroxyapatite. Biomaterials 25:651–658

    Article  CAS  PubMed  Google Scholar 

  6. Chang MC, Ko CC, Douglas WH (2003) Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24:2853–2862

    Article  CAS  PubMed  Google Scholar 

  7. Chang MC, Ko CC, Douglas WH (2003) Conformational change of hydroxyapatite/gelatin nanocomposite by glutaraldehyde. Biomaterials 24:3087–3094

    Article  CAS  PubMed  Google Scholar 

  8. Chang MC, Ko CC, Douglas WH (2005) Modification of hydroxyapatite/gelatin composite by polyvinylalcohol. J Mater Sci 40:2723–2727

    Article  CAS  ADS  Google Scholar 

  9. Chang MC, Douglas WH (2007) Cross-linkage of hydroxyapatite/gelatin nanocomposite using imide-based zero-length cross-linker. J Mater Sci Mater Med 18:2045–2051

    Article  CAS  PubMed  Google Scholar 

  10. Higashi S, Yamamuro T, Nakamura T, Ikada Y, Hyon SH, Jamshidi K (1986) Polymer hydroxyapatite composites for biodegradable bone fillers. Biomaterials 7:183–187

    Article  CAS  PubMed  Google Scholar 

  11. Yunos DM, Bretcanu O, Boccaccini AR (2008) Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci 43:4433–4442

    Article  ADS  Google Scholar 

  12. Ko CC, Luo TJM, Ma A (2008) Hydroxyapatite/GEMOSIL nanocompsoite. In: Narayan R, Colombo P (eds) Advances in bioceramics and porous ceramics: ceramic engineering and science proceedings. Wiley, New York

    Google Scholar 

  13. Rao MS, Dubenko IS, Roy S, Ali N, Dave BC (2001) Matrix-assisted biomimetic assembly of ferritin core analogues in organosilica sol-gels. J Am Chem Soc 123:1511–1512

    Article  CAS  PubMed  Google Scholar 

  14. Anderson SI, Downes S, Perry CC, Caballero AM (1998) Evaluation of the osteoblast response to a silica gel in vitro. J Mater Sci Mater Med 9:731–735

    Article  CAS  PubMed  Google Scholar 

  15. Carturan G, Dal Toso R, Boninsegna S, Dal Monte R (2004) Encapsulation of functional cells by sol–gel silica: actual progress and perspectives for cell therapy. J Mater Chem 14:2087–2098

    Article  CAS  Google Scholar 

  16. Dupraz AMP, de Wijn JR, vanderMeer SAT, de Groot K (1996) Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites. J Biomed Mater Res 30:231–238

    Article  CAS  PubMed  Google Scholar 

  17. Parisuthiman D, Mochida Y, Duarte WR, Yamauchi M (2005) Biglycan modulates osteoblast differentiation and matrix mineralization. J Bone Miner Res 20:1878–1886

    Article  CAS  PubMed  Google Scholar 

  18. Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press, San Diego

    Google Scholar 

  19. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  20. Helbig JM, Hutter M, Schonholzer UP (2000) Lack of syneresis during gelation of dense colloidal suspensions. J Colloid Interf Sci 222:46–50

    Article  CAS  Google Scholar 

  21. Lana SLB, Seddon AB (1998) X-ray diffraction studies of sol–gel derived ORMOSILs based on combinations of tetramethoxysilane and trimethoxysilane. J Sol-Gel Sci Technol 13:461–466

    Article  CAS  Google Scholar 

  22. Sousa RA, Reis RL, Cunha AM, Bevis MJ (2003) Coupling of HDPE/hydroxyapatite composites by silane-based methodologies. J Mater Sci Mater Med 14:475–487

    Article  CAS  PubMed  Google Scholar 

  23. Wang M, Bonfield W (2001) Chemically coupled hydroxyapatite-polyethylene composites: structure and properties. Biomaterials 22:1311–1320

    Article  CAS  PubMed  Google Scholar 

  24. Ko CC, Oyen M, FA M, Hu W-S (2006) Mechanical properties and cytochompatibility of biomimetic hydroxyapatite-gelatin nanocomposites. J Mater Res 21:3090–3098

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported, in part, by, NC Biotech Center Grant#2008-MRG-1108. CCK also thanks NIDCR K08DE018695 and American Association of Orthodontists Foundation for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzy-Jiun M. Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, TJ.M., Ko, CC., Chiu, CK. et al. Aminosilane as an effective binder for hydroxyapatite-gelatin nanocomposites. J Sol-Gel Sci Technol 53, 459–465 (2010). https://doi.org/10.1007/s10971-009-2114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2114-z

Keywords

Navigation