Skip to main content
Log in

Glycol modified titanosiloxane as molecular precursor for homogenous titania–silica material: synthesis and characterization

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ti(OPri)4 reacts with HOSi(OtBu)3 in anhydrous benzene in 1:1 and 1:2 molar ratios to afford alkoxy titanosiloxane precursors, [Ti(OPri)3{OSi(OtBu)3}] (A) and [Ti(OPri)2{OSi(OtBu)3}2] (B), respectively. Further reactions of (A) or (B) with glycols in 1:1 molar ratio afforded six complexes of the types [Ti(OPri)(O–G–O){OSi(OtBu)3}] (1A3A) and [Ti(O–G–O){OSi(OtBu)3}2] (1B3B), respectively [where G = (CH2)2 (1A, 1B); (CH2)3 (2A, 2B) and {CH2CH2CH(CH3)} (3A, 3B)]. Both (A) and (B) are liquids while all the other products are viscous liquids which get solidified on ageing. Cryoscopic molecular weight measurements of the fresh products indicate their monomeric nature. FAB mass studies of (A) and (B) also indicate monomeric nature. However, FAB mass spectra of the two representative solids (1A) and (2B) suggest dimeric behavior of the glycolato derivatives. (A) distills at 85 °C/5 mm while other products get decomposed even under reduced pressure. TG analyses of (A), (B), (1A), and (1B) suggest formation of titania–silica materials at 200 °C for (A) and (B) and 350 °C for (1A) and (1B). The products have been characterized by elemental analyses, FTIR and 1H, 13C & 29Si-NMR techniques. All these products are soluble in common organic solvents indicating a homogenous distribution of the components on the molecular scale. The Si/Ti ratio of the oxide may be controlled easily by the composition of the starting precursors. Hydrolysis of the glycol modified derivative, (1A) by the Sol–Gel technique affords the desired homogenous titania–silica material, TiO2·SiO2 in nano-size while, the precursor (A) yields a non-stiochiometric silica doped titania material. However, pyrolysis of (A) yields nano-sized crystallites of TiO2·SiO2. All these materials were characterized by FTIR, powder XRD patterns, SEM images, and EDX analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kessler VG, Spijksma GI, Seisenbaeva GA, Håkansson S, Blank DHA, Bouwmeester HJM (2006) J Sol Gel Sci Technol 40:163. doi:10.1007/s10971-006-9209-6

    Article  CAS  Google Scholar 

  2. Sanchez C, Julian B, Belleville P, Popall M (2005) J Mater Chem 15:35

    Google Scholar 

  3. Sharma N, Sharma V, Bohra R, Raju VS, Lorenz IP, Krinninger C, Mayer P (2007) Inorg Chim Acta 360:3002. doi:10.1016/j.ica.2007.02.048

    Article  CAS  Google Scholar 

  4. Schubert U (2007) Acc Chem Res 40:730. doi:10.1021/ar600036x

    Article  PubMed  CAS  Google Scholar 

  5. Dhayal V, Bohra R, Nagar M, Kaushik A, Mathur S, Barth S (2008) Appl Organomet Chem 22:629. doi:10.1002/aoc.1448

    Article  CAS  Google Scholar 

  6. Swamy KCK, Chandrasekhar V, Harland JJ, Holmes JM, Day RO, Holmes RR (1990) J Am Chem Soc 112:2341. doi:10.1021/ja00162a039

    Article  CAS  Google Scholar 

  7. Veith M, Rammo A (1996) J Organomet Chem 521:429. doi:10.1016/0022-328X(96)06297-3

    Article  CAS  Google Scholar 

  8. Forter KC, Bigi JP, Brown SN (2005) Inorg Chem 44:2803. doi:10.1021/ic048403d

    Article  Google Scholar 

  9. Lickiss PD (1995) Adv Inorg Chem 42:147. doi:10.1016/S0898-8838(08)60053-7

    Article  CAS  Google Scholar 

  10. Beckmann J, Dakternieks D, Duthie A, Larchin ML, Tiekink ERT (2003) Appl Organomet Chem 17:52. doi:10.1002/aoc.380

    Article  CAS  Google Scholar 

  11. Walawalkar MG, Murugavel R, Roesky HW (1996) In: Corriu R, Jutzi P (eds) Talior made silicon oxygen compounds—from molecules to materials. Vieweg, Braunschweig, p 61

    Google Scholar 

  12. Davis P, Murugavel R (2005) Synth React Inorg Met-Org Nano-Met Chem 35:591. doi:10.1080/15533170500225540

    CAS  Google Scholar 

  13. Terry KW, Tilley TD (1991) Chem Mater 3:1001. doi:10.1021/cm00018a008

    Article  CAS  Google Scholar 

  14. Terry KW, Lugmair CG, Tilley TD (1997) J Am Chem Soc 119:9745. doi:10.1021/ja971405v

    Article  CAS  Google Scholar 

  15. Lugmair CG, Tilley TD (1998) Inorg Chem 37:764. doi:10.1021/ic971211g

    Article  CAS  Google Scholar 

  16. Hoebbel D, Nacken M, Schmidt H, Huch V, Veith M (1998) J Mater Chem 8:171. doi:10.1039/a702644g

    Article  CAS  Google Scholar 

  17. Terry KW, Su K, Tilley TD, Rheingold AL (1998) Polyhedron 17:891. doi:10.1016/S0277-5387(97)00260-X

    Article  CAS  Google Scholar 

  18. Murugavel R, Davis P, Shete VS (2003) Inorg Chem 42:4696. doi:10.1021/ic034317m

    Article  PubMed  CAS  Google Scholar 

  19. Fujdala KL, Tilley TD (2004) Chem Mater 16:1035. doi:10.1021/cm030563k

    Article  CAS  Google Scholar 

  20. Coles MP, Lugmair CG, Terry KW, Tilley TD (2000) Chem Mater 12:122. doi:10.1021/cm990444y

    Article  CAS  Google Scholar 

  21. Laha SC, Kumar R (2002) J Catal 208:339. doi:10.1006/jcat.2002.3582

    Article  CAS  Google Scholar 

  22. Wang XS, Guo XW, Li G (2002) Catal Today 74:65. doi:10.1016/S0920-5861(01)00531-4

    Article  CAS  Google Scholar 

  23. Klein S, Thorimbert S, Maier WF (1996) J Catal 163:476. doi:10.1006/jcat.1996.0349

    Article  CAS  Google Scholar 

  24. Hutter R, Mallat T, Dutoit D, Baiker A (1996) Top Catal 3:421. doi:10.1007/BF02113865

    Article  CAS  Google Scholar 

  25. Jung M (2000) J Sol Gel Sci Technol 19:563. doi:10.1023/A:1008748924836

    Article  CAS  Google Scholar 

  26. Livage C, Safari A, Klein LC (2006) J Sol Gel Sci Technol 2:605. doi:10.1007/BF00486318

    Article  Google Scholar 

  27. Yamamoto O, Sasamat T (1992) J Mater Res 7:2488. doi:10.1557/JMR.1992.2488

    Article  ADS  CAS  Google Scholar 

  28. Singh A, Mehrotra RC (2004) Coord Chem Rev 248:101. doi:10.1016/j.cct.2003.09.004

    Article  CAS  Google Scholar 

  29. Boyel TJ (1951) Polym Sci 7:591. doi:10.1002/pol.1951.120070603

    Article  Google Scholar 

  30. Bradley DC, Hancock DC, Wardlaw W (1952) J Chem Soc 2773. doi:10.1039/jr9520002773

  31. Bradley DC, Abd-El-Halim FM, Mehrotra RC, Wardlaw W (1952) J Chem Soc 4609. doi:10.1039/jr9520004609

  32. Wang D, Yu R, Kumada N, Kinomura N (1999) Chem Mater 11:2008. doi:10.1021/cm980579o

    Article  CAS  Google Scholar 

  33. Pathak M, Bohra R, Mehrotra RC, Lorenz I-P, Piotrowski H (2003) Trans Met Chem 28:187. doi:10.1023/A:1022901918955

    Article  CAS  Google Scholar 

  34. Warren BE (1990) X-ray diffraction, vol 13. Dover Publication, New York

    Google Scholar 

  35. Miller JB, Johnston ST, Ko EI (1994) J Catal 150:311. doi:10.1006/jcat.1994.1349

    Article  CAS  Google Scholar 

  36. Andrianainarivelo M, Corriu R, Leclercq D, Mutin PH, Vioux AJ (1996) J Mater Chem 6:1665. doi:10.1039/jm9960601665

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to CSIR and DST-New Delhi for financial support. We thank CSMCRI, Bhavnagar for TGA and IIT, Roorkee for SEM coupled EDX analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Bohra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhayal, V., Atal, M.K., Choudhary, B.L. et al. Glycol modified titanosiloxane as molecular precursor for homogenous titania–silica material: synthesis and characterization. J Sol-Gel Sci Technol 52, 97–108 (2009). https://doi.org/10.1007/s10971-009-2008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2008-0

Keywords

Navigation