Skip to main content
Log in

Preparation of nanocrystalline CuAlO2 through sol–gel route

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocrystalline powders of CuAlO2 were synthesized through sol–gel method using nitrate-citrate route and also through solid state reaction method. We used a new set of precursor materials for the synthesis of CuAlO2 through sol–gel route which were not reported in the past. A little lowering of the synthesis temperature (1,000 °C) was observed in case of sol–gel process compared to the solid state reaction method (1,100 °C) and also at shorter time duration. The particle size of the synthesized powders was determined through small angle X-ray scattering. It has been observed that the particle size prepared by nitrate-citrate technique is less than the particle size prepared by the solid-state reaction method. Chemical states of the atomic species were determined by X-ray photoelectron spectroscopy. The formation of phase pure CuAlO2 were also confirmed by Fourier transformed infrared spectroscopy. A number of solvents were also used for finding the best possible combinations for obtaining phase pure CuAlO2 at 1,000 °C and it was observed that only the combination of nitrate salts, citric acid and ethanol resulted phase pure CuAlO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) Nature 389:939. doi:10.1038/40087

    Article  ADS  CAS  Google Scholar 

  2. Jauregui JJV, Gonzalez RQ, Hernandez-Torres JH, Galvan AM, Ramirez-Bon RR (2004) Vacuum 76:177. doi:10.1016/j.vacuum.2004.07.008

    Article  Google Scholar 

  3. Tonooka K, Shimokawa K, Nishimura O (2002) Thin Solid Films 411:129. doi:10.1016/S0040-6090(02)00201-8

    Article  ADS  CAS  Google Scholar 

  4. Ohta H, Orita M, Hirano M, Yagi I, Ueda K, Hosono H (2002) J Appl Phys 91:3074. doi:10.1063/1.1445498

    Article  ADS  CAS  Google Scholar 

  5. Gong H, Wang Y, Luo Y (2000) Appl Phys Lett 76:3959. doi:10.1063/1.126834

    Article  ADS  CAS  Google Scholar 

  6. Kim DS, Park TJ, Kim DH, Choi SY (2006) Physica Status Solidi A Appl Res 203(6):R51. doi:10.1002/pssa.200622137

    Article  ADS  CAS  Google Scholar 

  7. Zheng XG, Taniguchi K, Takahashi A (2004) Appl Phys Lett 85:1728. doi:10.1063/1.1784888

    Article  ADS  CAS  Google Scholar 

  8. Yanagi H, Inoue S, Ueda K, Kawazoe H, Hosono H, Hamada N (2000) J Appl Phys 88:4159. doi:10.1063/1.1308103

    Article  ADS  CAS  Google Scholar 

  9. Banejee AN, Maity R, Chattopadhyay KK (2004) Mater Lett 58:10. doi:10.1016/S0167-577X(03)00395-1

    Article  Google Scholar 

  10. Ellmer K (2001) J Phys D Appl Phys 34:3097. doi:10.1088/0022-3727/34/21/301

    Article  ADS  CAS  Google Scholar 

  11. Park K, Ko KY, Kwon H-C, Nahm S (2007) J Alloy Comp 437:1–6. doi:10.1016/j.jallcom.2006.07.067

    Article  CAS  Google Scholar 

  12. Park K, Ko KY, Seo WS (2005) J Eur Ceram Soc 25:2219. doi:10.1016/j.jeurceramsoc.2005.03.034

    Article  CAS  Google Scholar 

  13. Banerjee AN, Chattopadhyay KK (2005) J Appl Phys 97:084308. doi:10.1063/1.1866485

    Article  ADS  Google Scholar 

  14. Sato T, Sue K, Tsumatori H, Suzuki M, Tanaka S, Kawai-Nakamura A, Saitoh K, Aida K, Hiaki T (2008) J Supercrit Fluids 46:173. doi:10.1016/j.supflu.2008.04.002

    Article  CAS  Google Scholar 

  15. Dittrich T, Dloczik L, Guminskaya T, Steiner MCL, Grigorieva N, Urban I (2004) Appl Phys Lett 85:742. doi:10.1063/1.1776611

    Article  ADS  CAS  Google Scholar 

  16. Kim JK, Kim SS, Kim WS (2005) Mater Lett 59:4006. doi:10.1016/j.matlet.2005.07.050

    Article  CAS  Google Scholar 

  17. Hou L, Hou YD, Zhu MK, Tang HL, Liu JB, Wang H, Yan H (2005) Mater Lett 59:197. doi:10.1016/j.matlet.2004.07.046

    Article  CAS  Google Scholar 

  18. Zhu XB, Dai JM, Li XH, Zhao BC, Liu SM, Song WH, Sun YP (2005) Mater Lett 59:2366. doi:10.1016/j.matlet.2005.02.081

    Article  CAS  Google Scholar 

  19. Zhu XB, Yang J, Zhao BC, Sheng ZG, Liu SM, Lu WJ, Song WH, Sun YP (2004) J Phys D 37:2347. doi:10.1088/0022-3727/37/17/001

    Article  ADS  CAS  Google Scholar 

  20. Deng Z, Zhu X, Tao R, Dong W, Fang X (2007) Mater Lett 61:686. doi:10.1016/j.matlet.2006.05.042

    Article  CAS  Google Scholar 

  21. Krill CE, Birringer R (1998) Philos Mag A 77:621. doi:10.1080/01418619808224072

    Article  ADS  CAS  Google Scholar 

  22. Banerjee A, Bose S (2004) Chem Mater 26:16

    Google Scholar 

  23. Cannas C, Musinu A, Peddis D, Piccaluga G (2004) J Nanopart Res 6:223. doi:10.1023/B:NANO.0000034679.22546.d7

    Article  CAS  Google Scholar 

  24. Singh KA, Pathak LC, Roy SK (2007) Ceram Int 33:1463. doi:10.1016/j.ceramint.2006.05.021

    Article  CAS  Google Scholar 

  25. Okubo T, Kalihana M (1997) J Alloy Comp 256:151. doi:10.1016/S0925-8388(96)02986-6

    Article  CAS  Google Scholar 

  26. Mazumder S, Sen D, Sastry PUM, Chitra R, Sequeira A, Chandrasekaran KS (1998) J Phys Condens Matter 10:9969. doi:10.1088/0953-8984/10/44/005

    Article  ADS  CAS  Google Scholar 

  27. Schimidt PW (1991) J Appl Cryst 24:414. doi:10.1107/S0021889891003400

    Article  Google Scholar 

  28. Freltoft T, Kjems JK, Sinha SK (1986) Phys Rev B 33:269. doi:10.1103/PhysRevB.33.269

    Article  ADS  CAS  Google Scholar 

  29. Xiao Y, Ge S, Xi L, Zuo Y, Zhou X, Zhang B, Zhang L, Li C, Han X, Wen Z (2008) Appl Surf Sci 254:7459. doi:10.1016/j.apsusc.2008.06.026

    Article  ADS  CAS  Google Scholar 

  30. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minn. 55344

  31. Jolley LG, Geesey GG, Haukins MR, Write RB, Wichlacz PL (1989) Appl Surf Sci 37:469. doi:10.1016/0169-4332(89)90505-9

    Article  ADS  CAS  Google Scholar 

  32. Robert T, Offergeld G (1972) Phys Status Solidi A 14:277. doi:10.1002/pssa.2210140134

    Article  CAS  Google Scholar 

  33. Barr TL (1991) J Vac Sci Technol A 9:1793. doi:10.1116/1.577464

    Article  ADS  CAS  Google Scholar 

  34. Guittet MJ, Crocombette JP, Soyer MG (2001) Phys Rev B 63:125117. doi:10.1103/PhysRevB.63.125117

    Article  ADS  Google Scholar 

  35. Banerjee AN, Kundoo S, Chattopadhyay KK (2003) Thin Solid Films 440:5. doi:10.1016/S0040-6090(03)00817-4

    Article  ADS  CAS  Google Scholar 

  36. Trate P (1967) Spectrochim Acta A Mol Biomol Spectrosc 23:2127. doi:10.1016/0584-8539(67)80100-4

    Article  ADS  Google Scholar 

  37. Gu Y, Kuskovsky IL, Yin M, O’Brien S, Neumark GF (2004) Appl Phys Lett 85:3833. doi:10.1063/1.1811797

    Article  ADS  CAS  Google Scholar 

  38. Kim D, Miyamato M, Mishima T, Nakayama M (2005) J Appl Phys 98:083514

    Article  ADS  Google Scholar 

Download references

Acknowledgments

One of us (CKG) wishes to thank the Council for Scientific and Industrial Research (CSIR), Govt. of India, for awarding him a Senior Research Fellowship (SRF) during the execution of the work. The other two (SRP, TUM) want to thank the Minister of Human Resource Development (MHRD) for awarding them the scholarship during execution of this work at their M.Tech. course.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, C.K., Popuri, S.R., Mahesh, T.U. et al. Preparation of nanocrystalline CuAlO2 through sol–gel route. J Sol-Gel Sci Technol 52, 75–81 (2009). https://doi.org/10.1007/s10971-009-1999-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1999-x

Keywords

Navigation