Skip to main content
Log in

Sub-micron-sized delafossite CuCrO2 with different morphologies synthesized by nitrate–citric acid sol–gel route

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Currently, copper chromium oxide crystallizing in delafossite structure attracts huge research interest due to its versatile applications arising from its layered structure. In this work, delafossite CuCrO2 was synthesized by sol–gel method from their respective hydrated nitrate salts with citric acid as a chelating agent. The phase formation temperature was found to be between 750 and 775C. At 750C, the partial formation of delafossite CuCrO2 spheres with particle size in nano-regime was observed in the midst of platelets of spinel CuCr2O4. A green coloured powder with particle size 125–350 nm exhibiting distorted spheres was obtained at 775C. The increase in temperature has a profound impact on the particle size, morphology and the optical properties of CuCrO2. The X-ray powder diffraction studies revealed the formation of 3R-CuCrO2 phase (rhombohedral, space group R-3m) as a major product in the temperature range 775–1000C. The unit cell parameters were found to be a = b = 2.9711 Å and c = 17.0723 Å at 1000C. Scanning electron micrographs illustrated the different morphologies from spheres to hexagonal form via distorted spheres and cubes. The UV–Vis diffuse reflectance spectra measured for the powders exhibited semiconductor characteristics with an interesting size-related and temperature-dependent bandgap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Marquardt M A, Ashmore N A and Cann D P 2006 Thin Solid Films 496 146

    Article  Google Scholar 

  2. Amrute A P, Larrazabal G O, Mondelli C and Ramirez J P 2013 Angew. Chem. Int. Ed. 52 9772

    Article  Google Scholar 

  3. Zhou S, Fang X, Deng Z, Li D, Dong W, Tao R, Meng G and Wang T 2009 Sensor Actuat. B 143 119

    Article  Google Scholar 

  4. Kameoka S, Okada M and Tsai A P 2008 Catal. Lett. 120 252

    Article  Google Scholar 

  5. Meng Q, Lu S, Lu S and Xiang Y 2012 J. Sol–Gel Sci. Technol. 63 1

    Article  Google Scholar 

  6. Powar S, Xiong D, Daeneke T, Ma M T, Gupta A, Lee G, Makuta S, Tachibana Y, Chen W, Spiccia L, Cheng Y B, Goetz G, Baeuerle P and Bach U 2014 J. Phys. Chem. C 118 16375

    Article  Google Scholar 

  7. Xiong D, Zhang W, Zeng X, Xu Z, Chen W, Cui J, Wang M, Sun L and Cheng Y B 2013 ChemSusChem 6 1432

    Article  Google Scholar 

  8. Shannon R D, Rogers D B and Prewitt C T 1971 Inorg. Chem. 10 713

    Article  Google Scholar 

  9. Ketir W, Saadi S and Trari M 2012 J. Solid State Eletrochem. 16 213

    Article  Google Scholar 

  10. Amrute A P, Lodziana Z, Mondelli C, Krumeich F and Ramirez J P 2014 Chem. Mater. 25 4423

    Article  Google Scholar 

  11. Sheets W C, Mugnier E, Barnabe A, Marks T J and Poeppelmeier K R 2006 Chem. Mater. 18 7

    Article  Google Scholar 

  12. Zhou S, Fang X, Deng Z, Li D, Dong W, Tao R, Meng G, Wang T and Zhu X 2008 J. Cryst. Growth 310 5375

    Article  Google Scholar 

  13. Miclau M, Ursu D, Kumar S and Grozescu I 2012 J. Nanopart. Res. 14 1110

    Article  Google Scholar 

  14. Chiu T W, Yu B S, Wang Y R, Chen K T and Lin Y T 2011 J. Alloys Compd. 509 2933

    Article  Google Scholar 

  15. Deng Z, Zhu X, Tao R, Dong W and Fang X 2007 Mater. Lett. 61 686

    Article  Google Scholar 

  16. Kumar S, Marinela S, Miclau M and Martin C 2012 Mater. Lett. 70 40

    Article  Google Scholar 

  17. Okuda T, Jufuku N, Hidaka S and Terada N 2005 Phy. Rev. B 72 144403(1)

    Article  Google Scholar 

  18. Poienar M, Hardy V, Kundys B, Singh K, Maignan A, Damay F and Martin C 2012 J. Solid State Chem. 185 56

    Article  Google Scholar 

  19. Goetzendoerfer S, Polenzky C, Ulrich S and Loebmann P 2009 Thin Solid Films 518 1153

    Article  Google Scholar 

  20. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H and Hosono H 1997 Nature 389 939

    Article  Google Scholar 

  21. Nagarajan R, Draeske A D, Sleight A W and Tate J 2001 J. Appl. Phys. 89 8022

    Article  Google Scholar 

  22. Benko F A and Koffyberg F P 1986 Mater. Res. Bull. 21 753

    Article  Google Scholar 

  23. Mahapatra S and Shivasankar S A 2003 Chem. Vap. Deposition 9 238

    Article  Google Scholar 

  24. Li D, Fang X D, Deng Z H, Zhou S, Tao R H, Dong W W, Wang T, Zhao Y P, Meng G and Zhu X B 2007 J. Phys. D : Appl. Phys. 40 4910

    Article  Google Scholar 

  25. Scanlon D O and Watson G W 2011 J. Mater. Chem. 21 3655

    Article  Google Scholar 

  26. Bywalez R, Goetzendoerfer S and Loebmann P 2010 J. Mater. Chem. 20 6562

    Article  Google Scholar 

  27. Li D, Fang X, Zhao A, Deng Z, Dong W and Tao R 2010 Vacuum 84 851

    Article  Google Scholar 

  28. Xiong D, Zeng X, Zhang W, Chen W, Xu X, Wang M and Cheng Y B 2012 J. Mater. Chem. 22 24760

    Article  Google Scholar 

  29. Ursu D and Miclau M 2014 J. Nanopart. Res. 16 2160

    Article  Google Scholar 

  30. Srinivasan R, Chavillon B, Dossier-Brochard C, Cario L, Paris M, Gautron E, Deniard P, Odobel F and Jobic S 2008 J. Mater. Chem. 18 5647

    Article  Google Scholar 

  31. Chavillon B, Cario L, Dossier-Brochard C, Srinivasan R, Le Pleux L, Pellegrin Y, Blart E, Odobel F and Jobic S 2010 Phys. Status Solidi A 207 1642

    Article  Google Scholar 

  32. Goetzendoerfer S, Bywalez R and Loebmann P 2009 J. Sol–Gel Sci. Technol. 52 113

    Article  Google Scholar 

  33. Ahmad A, Jagadale T, Dhas V, Khan S, Patil S, Pasricha R, Ravi V and Ogale S B 2007 Adv. Mater. 19 3295

    Article  Google Scholar 

  34. Srinivasan R and Bolloju S 2014 AIP Conf. Proc. 1576 205

    Article  Google Scholar 

  35. Singh K A and Pathak L C 2007 Ceram. Int. 33 1463

    Article  Google Scholar 

  36. Saadi S, Bouguelia A and Trari M 2006 Sol. Energy 80 272

    Article  Google Scholar 

  37. Zeghbroeck B V 2011 Principle of semiconductor devices, http://ecee. colorado.edu/~bart/book/book/contents.htm (University of Colorado)

Download references

Acknowledgements

Department of Science and Technology (DST SERB) is acknowledged for funding through the FASTTRACK scheme (No. SR/FT/CS-024/2010). We wish to thank the Department of Physics, Alagappa University at Karaikudi, Centre for Nano Science and Technology, Karunya University at Coimbatore and University of Hyderabad for characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RADHAKRISHNAN SRINIVASAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BOLLOJU, S., SRINIVASAN, R. Sub-micron-sized delafossite CuCrO2 with different morphologies synthesized by nitrate–citric acid sol–gel route. Bull Mater Sci 40, 195–199 (2017). https://doi.org/10.1007/s12034-016-1340-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1340-6

Keywords

Navigation