Skip to main content
Log in

The nanoscale description of acid penetration to the gold colloids encapsulated in silica sol–gel matrix

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Various sizes of gold nano colloidal particles ranging from 5 nm to 100 nm of size were encapsulated in a silica based sol–gel, and these surfaces were exposed to a pH 1 acid solution. This enabled us to observe the process of solvent intrusion and interaction with gold colloids by the absorption spectrum as a function of time. The rate was analyzed by a single exponential analytical function, and the maximum rate was found for gold colloid of 15 nm size. The least acid interaction and colour change was observed for the size of 60 nm. It was speculated that the surface of these gold colloids were homogeneously covered by the sodium tetra-borate buffer which insulated silica gel layer, thus avoiding direct contact of the acid with the surface of the gold colloid. This study confirmed that the nano scale dopant size affects the rate of solvent penetration into a sol–gel cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dvorak O, De Armond MK (1993) J Phys Chem 97:2646. doi:10.1021/j100113a028

    Article  CAS  Google Scholar 

  2. Novak BM (1993) Adv Mater 5:422. doi:10.1002/adma.19930050603

    Article  CAS  Google Scholar 

  3. Lee GR, Crayston JA (1993) Adv Mater 5:434. doi:10.1002/adma.19930050604

    Article  CAS  Google Scholar 

  4. MacCraith BD, McDonagh C, O’Keefe G, Keyes ET, Vos JG, O’Kelly B, McGlip JF (1993) Analyst 118:385. doi:10.1039/an9931800385

    Article  ADS  CAS  Google Scholar 

  5. Castellano FN, Heimer TA, Tandhasetti MT, Meyer GJ (1994) Chem Mater 6:1041. doi:10.1021/cm00043a028

    Article  CAS  Google Scholar 

  6. Kiernan P, McDonagh C, MacCraith BD, Mongey K (1994) J Sol-Gel Sci Technol 2:513. doi:10.1007/BF00486300

    Article  CAS  Google Scholar 

  7. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell. Garland, New York

    Google Scholar 

  8. Crick F (1970) Nature 225:420. doi:10.1038/225420a0

    Article  PubMed  ADS  CAS  Google Scholar 

  9. Valiullin R, Kortunov P, Karger J, Timoshenko V (2004) J Chem Phys 120:11804. doi:10.1063/1.1753572

    Article  PubMed  ADS  CAS  Google Scholar 

  10. Mitra PP, Sen PN, Schwartz LM, Le Doussal P (1992) Phys Rev Lett 68:3555. doi:10.1103/PhysRevLett.68.3555

    Article  PubMed  ADS  CAS  Google Scholar 

  11. Mitra PP, Sen PN, Schwartz LM (1993) Phys Rev B 47:8565. doi:10.1103/PhysRevB.47.8565

    Article  ADS  Google Scholar 

  12. Callaghan P (1993) Principles of nuclear magnetic microscopy. Clarendon Press, Oxford

    Google Scholar 

  13. Latour LL, Svoboda K, Mitra PP, Sotak CH (1994) Proc Natl Acad Sci USA 91:1229. doi:10.1073/pnas.91.4.1229

    Article  PubMed  ADS  CAS  Google Scholar 

  14. Eigen M, Rigler R (1994) Proc Natl Acad Sci USA 91:5740. doi:10.1073/pnas.91.13.5740

    Article  PubMed  ADS  CAS  Google Scholar 

  15. Henke J, Engelmann J, Flogel U, Pfeuffer J, Kutscher B, Nossner G, Engel J, Voegeli R, Leibfritz D (1998) Drugs Today 34(Suppl. F):37

    CAS  Google Scholar 

  16. Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Dover, New York

    Google Scholar 

  17. Potma EO, de Boeji WP, van Haastert PJM, Wiersma DA (2001) Proc Natl Acad Sci USA 98:1577. doi:10.1073/pnas.031575698

    Article  PubMed  ADS  CAS  Google Scholar 

  18. Stallmach F, Vogt C, Karger J, Helbig K, Jacobs F (2002) Phys Rev Lett 88:105505. doi:10.1103/PhysRevLett.88.105505

    Article  PubMed  ADS  Google Scholar 

  19. Darqui A, Poline J-B, Poupon C, Saint-Jalmes H, Le Bihan D (2001) Proc Natl Acad Sci USA 98:9391. doi:10.1073/pnas.151125698

    Article  ADS  Google Scholar 

  20. Yokoyama K, Johnson BE, Bourne JW (2007) J Sol-Gel Sci Technol 43:259. doi:10.1007/s10971-007-1566-2

    Article  CAS  Google Scholar 

  21. Katz E, Shipway AN, Willner I (2004) Nanoparticles from theory to application. Wiley, Germany

    Google Scholar 

  22. Daniel MC, Astruc D (2004) Chem Rev 104:293. doi:10.1021/cr030698+

    Article  PubMed  CAS  Google Scholar 

  23. Verma A, Simard JM, Rotello VM (2004) Langmuir 20:4178. doi:10.1021/la036183v

    Article  PubMed  CAS  Google Scholar 

  24. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) Nature 382:607. doi:10.1038/382607a0

    Article  PubMed  ADS  CAS  Google Scholar 

  25. Alivisatos AP, Johnson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP Jr, Schultz PG (1996) Nature 382:609. doi:10.1038/382609a0

    Article  PubMed  ADS  CAS  Google Scholar 

  26. Taton TA, Mirkin CA, Letsinger RL (2000) Science 289:1757. doi:10.1126/science.289.5485.1757

    Article  PubMed  ADS  CAS  Google Scholar 

  27. Reichert J, Csaki A, Kohler JM, Fritzsche W (2000) Anal Chem 72:6025. doi:10.1021/ac000567y

    Article  PubMed  CAS  Google Scholar 

  28. Liz-Marzan LM (2003) In: Liz-Marza LM, Kamat PV (eds) Nanoscale materials. Springer, US, p 227

    Google Scholar 

  29. Yokoyama K, Welchons DR (2007) Nanotechnology 18:105101. doi:10.1088/0957-4484/18/10/105101

    Article  ADS  Google Scholar 

  30. Yokoyama K, Briglio NM, Sri Hartati D, Tsang SMW, MacCormac JE, Welchons DR (2008) Nanotechnology 19:375101. doi:10.1088/0957-4484/19/37/375101

    Article  Google Scholar 

  31. Smith K, Silvernail NJ, Rodgers KR, Elgren TE, Castro M, Parker RM (2002) J Am Chem Soc 124:4247. doi:10.1021/ja012215u

    Article  PubMed  CAS  Google Scholar 

  32. Cybulski SM, Haley TP (2004) J Chem Phys 121:7711. doi:10.1063/1.1795652

    Article  PubMed  ADS  CAS  Google Scholar 

  33. Fano U (1961) Phys Rev B 124:1866. doi:10.1103/PhysRev.124.1866

    Article  MATH  ADS  CAS  Google Scholar 

  34. Hench LL, LaTorre GP, Donovan S, Marotta J, Valliere E (1992) SPIE Sol-gel Opt 1758:98

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation under grant number NSF-NER 0508240. A generous contribution from The SUNY-Geneseo Foundation at an initial stage of this project is greatly acknowledged. Nitrogen porosimetry measurements were kindly supported by Professor Hong Yang of the University of Rochester. We are grateful for valuable suggestions to this manuscript from Professor David Geiger at SUNY-Geneseo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazushige Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoyama, K., Swana, J.R., Gilbert, T.M. et al. The nanoscale description of acid penetration to the gold colloids encapsulated in silica sol–gel matrix. J Sol-Gel Sci Technol 50, 48–57 (2009). https://doi.org/10.1007/s10971-009-1904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1904-7

Keywords

Navigation