Skip to main content
Log in

Physico-chemical properties of ambiently dried sodium silicate based aerogels catalyzed with various acids

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Experimental results on the physico-chemical properties of ambiently dried sodium silicate based aerogels catalyzed with various acids are reported. The aerogels were prepared by hydrolysis and polycondensation of sodium silicate followed by subsequent washings, surface chemical modification and ambient pressure drying using 10 various acid catalysts consisting of strong and weak acids. The strength and concentration of acids have the major effect on the gelation of sol and hence the physico-chemical properties of the silica aerogels. Strong acids such as HCl, HNO3 and H2SO4 resulted in shrunk (70–95%) aerogels whereas weak acids such as citric and tartaric acids resulted in less shrunk (34–50%) aerogels. The physical properties of silica aerogels were studied by measuring bulk density, volume shrinkage (%), porosity (%), pore volume, thermal conductivity, contact angle with water, Transmission Electron Microscopy (TEM), Atomic Absorption Spectroscopy (AAS), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric-Differential Thermal (TG-DT) analyses and N2 adsorption–desorption BET surface analyzer. The best quality silica aerogels in terms of low density (0.086 g/cm3), low volume shrinkage (34%), high porosity (95%), low thermal conductivity (0.09 W/m K) and hydrophobic (148°) were obtained for molar ratio of Na2SiO3:H2O:citric acid:TMCS at 1:146.67:0.72:9.46 with 20 min gelation time. The resulting aerogels exhibited the thermal stability up to around 420 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cantin M, Cassee M, Koch L, Jouan R, Movtel J, Teichner SJ (1974) Nucl Instrum Methods 118:7. doi:10.1016/0029-554X(74)90700-9

    Article  Google Scholar 

  2. Bourdinaud M, Cheze JB, Thevenin CJ (1976) Nucl Instrum Methods 136:99

    Article  ADS  CAS  Google Scholar 

  3. Carlson PJ, Johansson KE, Kesteman J, Norrby U, Pingot O, Tevernier S, Van Den Bogaert F, Van Lancker L (1979) Nucl Instrum Methods 160:407

    Article  ADS  CAS  Google Scholar 

  4. Fricke J (ed) (1985) Aerogels. Springer, Berlin

    Google Scholar 

  5. Klvana D, Chaouki J, Kusohorsky D, Chavarie C, Pajonk GM (1988) Appl Catal 42:121. doi:10.1016/S0166-9834(00)80080-9

    Article  CAS  Google Scholar 

  6. Blanchard F, Reymond JP, Pommier B, Teichner SJ (1982) J Mol Catal 17:171. doi:10.1016/0304-5102(82)85028-1

    Article  CAS  Google Scholar 

  7. Bond GC, Flamerz S (1987) Appl Catal 33:219. doi:10.1016/S0166-9834(00)80594-1

    Article  CAS  Google Scholar 

  8. Pajonk GM (1991) Appl Catal 72:219

    Google Scholar 

  9. Rubin M, Lampert C (1983) Sol Energy Mater 1:393. doi:10.1016/0165-1633(83)90012-6

    Article  Google Scholar 

  10. Tewari PH, Hunt AJ (1986) US Patent 4,610,863

  11. Fricke J, Caps R, Buttner D, Heinemaun D, Hummer E (1987) Sol Energy Mater 16:267. doi:10.1016/0165-1633(87)90026-8

    Article  CAS  Google Scholar 

  12. Hunt AJ (1991) LBL research review. Lawrence Berkeley Laboratory, University of California, USA, Summer 1991, p 3

  13. Henning S, Svensson L (1981) Phys Scr 23:697. doi:10.1088/0031-8949/23/4B/018

    Article  ADS  CAS  Google Scholar 

  14. Poelz G, Riethmuller R (1982) Nucl Instrum Methods 195:491. doi:10.1016/0029-554X(82)90010-6

    Article  ADS  CAS  Google Scholar 

  15. Prassas M, Phalippou J, Zarzycki J (1984) J Mater Sci 19:1665. doi:10.1007/BF00563063

    Article  Google Scholar 

  16. Pajonk GM, Venkatewara Rao A, Wagh PB, Haranath D (1997) J Mater Synth Process 5:6

    Google Scholar 

  17. Venkatewara Rao A, Pajonk GM, Parvathy NN (1994) J Mater Sci 29:1807–1817. doi:10.1007/BF00351300

    Article  Google Scholar 

  18. Parvathy Rao A, Pajonk GM, Venkatewara Rao A (2005) J Mater Sci 40:3481–3489. doi:10.1007/s10853-005-2853-3

    Article  Google Scholar 

  19. Bell RP (1969) Acids and bases: their quantitative behavior, Ch 2, pp 17–18

  20. Aelion R, Loebel A, Eirich F (1950) J Am Chem Soc 72:5705–5712. doi:10.1021/ja01168a090

    Article  CAS  Google Scholar 

  21. Aelion R, Loebel A, Eirich F (1950) Recueil Travaux Chimiques 69:61–75

    CAS  Google Scholar 

  22. Vysotskii ZZ, Strazhesko DN (1973) In: Strazhesko DN (ed) Adsorption and adsorbents, vol 1, Wiley, New York, pp 55–71

  23. Lee CJ, Kim GS, Hyun SH (2002) J Mater Sci 37(11):2237–2241. doi:10.1023/A:1015309014546

    Article  CAS  Google Scholar 

  24. Prakash SS, Brinker CJ, Hurd AJ (1995) J Non-Cryst Solids 190(3):264–275. doi:10.1016/0022-3093(95)00024-0

    Article  ADS  CAS  Google Scholar 

  25. Shi F, Wang LJ, Liu JX, Li SH (2004) N Building Mater 6:9; in Chinese

    Google Scholar 

  26. Sing KSW, Everett DH, Haw RAW, Moscow L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57(4):603. doi:10.1351/pac198557040603

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Science and Technology (DST), New Delhi, Government of India, for the financial support for this work through a major research project on “Aerogels” (No. SR/S2/CMR-67/2006). Dr. A. Parvathy Rao and Uzma K. H. Bangi are highly thankful to the DST for providing the Research Associate (RA) and Junior Research Fellowship (JRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venkateswara Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bangi, U.K.H., Parvathy Rao, A., Hirashima, H. et al. Physico-chemical properties of ambiently dried sodium silicate based aerogels catalyzed with various acids. J Sol-Gel Sci Technol 50, 87–97 (2009). https://doi.org/10.1007/s10971-008-1887-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1887-9

Keywords

Navigation