Skip to main content
Log in

IR and NMR time-resolved studies on the hydrolysis and condensation of methacryloxyalkylsilanes

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The sol–gel reactions of the two methacrylate-modified silanes methacryloxymethyltriethoxysilane (MAMTES) and methacryloxypropyltrimethoxysilane (MAPTMS) were followed by using two independent time-resolved spectroscopic methods, viz., IR ATR and NMR with the aim to optimise their pre-hydrolysis times and consequently their use as precursors for hybrid materials. Time resolved measurements were carried out on the two systems under sol–gel conditions. Whereas the hydrolysis of both siloxanes is very fast, condensation proceeds gradually and is not completely finished within 5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schubert U, Hüsing N (2000) Synthesis of inorganic materials. Wiley VCH, Weinheim

    Google Scholar 

  2. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press Inc, San Diego

    Google Scholar 

  3. Sanchez C, In M (1992) J Non-Cryst Solids 147:1

    Article  ADS  Google Scholar 

  4. Hench LL, West JK (1990) Chem Rev 90:33

    Article  CAS  Google Scholar 

  5. Hench LL (2007) Sol–gel technology. Kirk-Othmer Encyclopedia of chemical technology, vol 23, 5th edn. pp 53–84

  6. Special Issue on Organic–Inorganic Nanocomposite (2001) Chem Mater 13

  7. MacKenzie JD, Bescher EP (2007) Acc Chem Res 40:810–818

    Article  PubMed  CAS  Google Scholar 

  8. Landau MV (2008) In: Handbook of heterogeneous catalysis, vol 1, 2nd edn. Wiley-VCH, pp 119–160

  9. Trewyn BG, Slowing II, Giri S, Chen H-T, Victor S-Y (2007) Acc Chem Res 40:846–853

    Article  PubMed  CAS  Google Scholar 

  10. Kickelbick G (2006) Hybrid materials. Wiley VCH, Weinheim

    Google Scholar 

  11. Gomez-Romero P, Sanchez C (2005) Functional hybrid materials. Wiley VCH, Weinheim

    Google Scholar 

  12. Prosposito P, Casalboni M (2003) Optical properties of functionalized solgel derived hybrid materials. In: Handbook of organic–inorganic hybrid materials and nanocomposites, vol 1. American Scientific Publishers, Los Angeles, CA, pp 83–123

  13. Sanchez C, Julian B, Belleville P, Popall M (2005) J Mater Chem 15:3559 (references therein)

    Article  CAS  Google Scholar 

  14. Spanhel L, Popall M, Müller G (1995) Proc Indian Acad Sci Chem Sci 107:634

    Google Scholar 

  15. Que WX, Hu X (2005) Surf Coat Technol 198:40

    Article  CAS  Google Scholar 

  16. Xiong MN, Zhou S, Wu L, Wang B, Yang L (2004) Polymer 45:8127

    Article  CAS  Google Scholar 

  17. Kickelbick G (2003) Prog Polym Sci 28:83

    Article  CAS  Google Scholar 

  18. Soppera O, Croutxé-Barghorn C, Carrè C, Blanc D (2002) Appl Surf Sci 186:91

    Article  ADS  CAS  Google Scholar 

  19. Jang J, Park H (2002) J Appl Polym Sci 10:2074

    Article  Google Scholar 

  20. Jo H, Blum FD (1999) Chem Mater 10:2548

    Article  Google Scholar 

  21. Armelao L, Bleiner D, Di Noto V, Gross S, Sada C, Schubert U, Tondello E, Vonmont H, Zattin A (2005) Appl Surf Sci 249:277

    Article  ADS  CAS  Google Scholar 

  22. Armelao L, Eisenmenger-Sittner C, Groenewolt M, Gross S, Sada C, Schubert U, Tondello E, Zattin A (2005) J Mater Chem 15:1838

    Article  CAS  Google Scholar 

  23. Armelao L, Bertagnolli H, Gross S, Krishnan V, Lavrencic-Stangar U, Müller K, Orel B, Srinivasan G, Tondello E, Zattin A (2005) J Mater Chem 15:1954

    Article  CAS  Google Scholar 

  24. Gross S, Zattin A, Di Noto V, Lavina S (2006) Monatsh Chem 137:583

    Article  CAS  Google Scholar 

  25. Armelao L, Gross S, Müller K, Pace G, Tondello E, Tsetsgee O, Zattin A (2006) Chem Mater 18:6019

    Article  CAS  Google Scholar 

  26. Armelao L, Bertagnolli H, Bleiner D, Groenewolt M, Gross S, Krishnan V, Sada C, Schubert U, Tondello E, Zattin A (2007) Adv Funct Mater 17:1671

    Article  CAS  Google Scholar 

  27. Mascotto S, Tsetsgee O, Müller K, Maccato C, Smarsly B, Brandhuber D, Tondello E, Gross S (2007) J Mater Chem 17:4387

    Article  CAS  Google Scholar 

  28. Park OH, Jung JI, Bae BS (2001) J Mater Res 16:17

    Article  Google Scholar 

  29. Chan CK, Chu IM (2001) Polymer 42:6823

    Article  CAS  Google Scholar 

  30. Bourgeat-Lami E, Tissot I, Lefebvre F (2002) Macromolecules 35:6185

    Article  CAS  Google Scholar 

  31. Sepeur S, Kunze N, Werner B, Schmidt H (1999) Thin Solid Films 351:216

    Article  ADS  CAS  Google Scholar 

  32. Jo H, Blum FD (1999) Chem Mater 11:2548

    Article  CAS  Google Scholar 

  33. Lewis LN, Early TA, Larsen M, Williams EA, Grande JC (1995) Chem Mater 7:1375

    Article  Google Scholar 

  34. Matsuura Y, Miura S, Naito H, Inoue H, Matsukawa K (2003) J Organomet Chem 685:230

    Article  CAS  Google Scholar 

  35. Ikegami T, Ichimaru T, Kajiwara W, Nasagawa N, Hosoya K, Tanaka N (2007) Anal Sci 23:1

    Article  Google Scholar 

  36. Altmann S, Pfeiffer J (2003) Monatsh Chem 134:1081

    CAS  Google Scholar 

  37. Japelj B, Šurca Vuk A, Orel B, Slemenik Perše L, Germana I, Kovač J (2008) Solar Energy Mater Solar Cells 92:1149–1161

    Article  CAS  Google Scholar 

  38. Orel B, Jese R, Lavrencic-Stangar U, Grdadolnik J, Puchberger M (2005) J Non-Cryst Solids 351:530–549

    Article  ADS  CAS  Google Scholar 

  39. Fischer D, Pospiech D, Scheler U, Navarro R, Messori M, Fabbri P (2008) Macromol Symp 265:134–143

    Article  CAS  Google Scholar 

  40. Jabbour J, Calas S, Gatti S, Kribich RK, Myara M, Pille G, Etienne P, Moreau Y (2008) J Non-Cryst Solids 354:651–658

    Article  ADS  CAS  Google Scholar 

  41. Lavrencic Stangar U, Orel B, Neumann B, Stathatos E, Lianos P (2003) J Sol–Gel Sci Technol 26:1113

    Article  Google Scholar 

  42. Dire S, Pagani E, Babonneau F, Ceccato R, Carturan G (1997) J Mater Chem 7:67

    Article  CAS  Google Scholar 

  43. Lavrencic Stangar U, Huesing N (2003) Silicon Chem 2:157

    Article  Google Scholar 

  44. Sassi A, Milani R, Venzo A, Gleria M (2006) Des Monomers Polym 9:627 and references therein

    Article  CAS  Google Scholar 

  45. Orel B, Jese R, Vilcnik A, Lavrencic Stangar U (2005) J Sol–Gel Sci Technol 34:251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Research Council (CNR), Italy and the INSTM Consortium (Italy) as well as the Slovenian Research Agency are acknowledged for financial support. Mr. Antonio Ravazzolo is gratefully acknowledged for technical support. Dr. Angela Surca Vuk is gratefully acknowledged for helpful discussion. The ARRS Slovenian Agency and the Ministero degli Affari Esteri, Rome, Italy are gratefully acknowledged for the financial support for the researchers mobility in the framework of a Italian-Slovenian bilateral project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Gross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavrencic Stangar, U., Sassi, A., Venzo, A. et al. IR and NMR time-resolved studies on the hydrolysis and condensation of methacryloxyalkylsilanes. J Sol-Gel Sci Technol 49, 329–335 (2009). https://doi.org/10.1007/s10971-008-1882-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1882-1

Keywords

Navigation