Skip to main content

Abstract

Raman spectroscopy is one of the mostly utilized optical spectroscopic tools for revealing both the catalyst structure and surface chemistry in heterogeneous catalysis. It has recently seen increasing role in catalysis research, thanks to the development of new Raman instrumentations, reactors, and combination with other techniques, leading to in situ and operando studies with significant temporal and spatial resolutions. This chapter aimed to provide a general overview of the applications of Raman spectroscopy in heterogeneous catalysis. It starts with an introduction to the fundamentals of Raman scattering including theory and pros and cons for catalysis research; followed by a description of the typical setup of a Raman system and recent advances in Raman instrumentations; then a chronology of the applications of Raman spectroscopy for ex situ, in situ, and operando studies of catalysis; elucidations of the advances in improving the temporal and spatial resolution of Raman spectroscopy of catalysis; Raman application case studies related to catalyst synthesis, treatments, and function under reaction conditions; illustrations of the power of multimodal approach including Raman spectroscopy in catalysis research; and ended with a brief summary and a future outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raman, C.V., Krishnan, K.S.: A new type of secondary radiation. Nature. 121, 501–502 (1928)

    CAS  Google Scholar 

  2. Brown, F.R., Makovsky, L.E.: Raman spectra of a cobalt oxide-molybdenum oxide supported catalyst. Appl. Spectrosc. 31, 44–46 (1977)

    CAS  Google Scholar 

  3. Brown, F.R., Makovsky, L.E., Rhee, K.H.: Raman spectra of supported molybdena catalysts. II. Sulfided, used, and regenerated catalysts. J. Catal. 50, 385–389 (1977)

    CAS  Google Scholar 

  4. Lunsford, J.H., Yang, X., Haller, K., Laane, J., Mestl, G., Knoezinger, H.: In situ Raman spectroscopy of peroxide ions on Ba/Mgo catalysts. J. Phys. Chem. 97, 13810–13813 (1993)

    CAS  Google Scholar 

  5. Pittman, R.M., Bell, A.T.: Raman investigations of Nh3 adsorption on TiO2, Nb2O5, and Nb2O5/TiO2. Catal. Lett. 24, 1–13 (1994)

    CAS  Google Scholar 

  6. Wachs, I.E., Roberts, C.A.: Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Chem. Soc. Rev. 39, 5002–5017 (2010)

    CAS  Google Scholar 

  7. Chua, Y.T., Stair, P.C., Wachs, I.E.: A comparison of ultraviolet and visible Raman spectra of supported metal oxide catalysts. J. Phys. Chem. B. 105, 8600–8606 (2001)

    CAS  Google Scholar 

  8. Wachs, I.E.: In situ Raman spectroscopy studies of catalysts. Top. Catal. 8, 57–63 (1999)

    CAS  Google Scholar 

  9. Campion, A., Kambhampati, P.: Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998)

    CAS  Google Scholar 

  10. Arya, K., Zeyher, R.: Theory of surface-enhanced Raman scattering from molecules adsorbed at metal surfaces. Phys. Rev. B. 24, 1852–1865 (1981)

    CAS  Google Scholar 

  11. Zhang, Y., Fu, D., Xu, X., Sheng, Y., Xu, J., Han, Y.-F.: Application of operando spectroscopy on catalytic reactions. Curr. Opin. Chem. Eng. 12, 1–7 (2016)

    CAS  Google Scholar 

  12. Kim, H., Kosuda, K.M., Van Duyne, R.P., Stair, P.C.: Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem. Soc. Rev. 39, 4820–4844 (2010)

    CAS  Google Scholar 

  13. Stavitski, E., Weckhuysen, B.M.: Infrared and Raman imaging of heterogeneous catalysts. Chem. Soc. Rev. 39, 4615–4625 (2010)

    CAS  Google Scholar 

  14. Stair, P.C.: Advances in Raman spectroscopy methods for catalysis research. Curr. Opinion Solid State Mater. Sci. 5, 365–369 (2001)

    CAS  Google Scholar 

  15. Fan, F., Feng, Z., Li, C.: UV Raman spectroscopic study on the synthesis mechanism and assembly of molecular sieves. Chem. Soc. Rev. 39, 4794–4801 (2010)

    CAS  Google Scholar 

  16. Wachs, I.E., Hardcastle, F.D.: Applications of raman spectroscopy to heterogeneous catalysis. In: Spivey, J.J., Agarwal, S.K. (eds.) Catalysis: Volume 10, vol. 10, pp. 102–153. The Royal Society of Chemistry, London (1993)

    Google Scholar 

  17. Wachs, I.E., BaÑAres, M.: In situ and operando Raman spectroscopy of oxidation catalysts. In: Handbook of Advanced Methods and Processes in Oxidation Catalysis, pp. 420–446. Imperial College Press (2011). https://doi.org/10.1142/9781848167513_0017

    Chapter  Google Scholar 

  18. Grasselli, J.G., Snavely, M.K., Bulkin, B.J.: Applications of Raman spectroscopy. Physics Reports. 65, 231–344 (1980)

    Google Scholar 

  19. Bañares, M.A., Mestl, G.: Chapter 2. Structural characterization of operating catalysts by Raman spectroscopy. In: Advances in Catalysis, vol. 52, pp. 43–128. Academic Press, Amsterdam (2009)

    Google Scholar 

  20. Cai, Y., Wang, C.B., Wachs, I.E.: Reaction induced spreading of metal oxides: in situ Raman spectroscopic studies during oxidation reactions. In: Grasselli, R.K., Oyama, S.T., Gaffney, A.M., Lyons, J.E. (eds.) Studies in Surface Science and Catalysis, vol. 110, pp. 255–264. Elsevier, Amsterdam (1997)

    Google Scholar 

  21. Carreira, L.A., Goss, L.P., Malloy, T.G.: Preresonance enhancement of the coherent anti-stokes Raman spectra of fluorescent compounds. J. Chem. Phys. 68, 280–284 (1978)

    CAS  Google Scholar 

  22. Tolles, W.M., Nibler, J.W., McDonald, J.R., Harvey, A.B.: A review of the theory and application of coherent anti-stokes Raman spectroscopy (CARS). Appl. Spectrosc. 31, 253–271 (1977)

    CAS  Google Scholar 

  23. Ferraro, J.R., Nakamoto, K., Brown, C.W.: Chapter 1 – Basic theory. In: Ferraro, J.R., Nakamoto, K., Brown, C.W. (eds.) Introductory Raman Spectroscopy (Second Edition), pp. 1–94. Academic Press, San Diego (2003). https://doi.org/10.1016/B978-012254105-6/50004-4

    Chapter  Google Scholar 

  24. Hill, C.G., Wilson, J.H.: Raman spectroscopy of iron molybdate catalyst systems: part I. Preparation of unsupported catalysts. J. Mol. Catal. 63, 65–94 (1990)

    CAS  Google Scholar 

  25. Griffith, W.P., Wickins, T.D.: Raman studies on species in aqueous solutions. Part II. Oxy-species of metals of groups VIA, VA, and IVA. J. Chem. Soc. A, 675 (1967). https://doi.org/10.1039/J19670000675675-679

  26. Griffith, W.P., Lesniak, P.J.B.: Raman studies on species in aqueous solutions. Part III. Vanadates, molybdates, and tungstates. J. Chem. Soc. A, 1066 (1969). https://doi.org/10.1039/J196900010661066-1071

  27. Kervinen, K., Korpi, H., Gerbrand Mesu, J., Soulimani, F., Repo, T., Rieger, B., Leskelä, M., Weckhuysen, B.M.: Mechanistic insights into the oxidation of veratryl alcohol with Co(Salen) and oxygen in aqueous media: an in-situ spectroscopic study. Eur. J. Inorg. Chem. 2005, 2591–2599 (2005)

    Google Scholar 

  28. Mestl, G., Knözingers, H., Lunsford, J.H.: High temperature in situ Raman spectroscopy of working oxidative coupling catalysts. Ber. Bunsenges. Phys. Chem. 97, 319–321 (1993)

    CAS  Google Scholar 

  29. Haller, K., Lunsford, J.H., Laane, J.: Temperature dependence of the Raman spectrum of barium peroxide. J. Phys. Chem. 100, 551–555 (1996)

    CAS  Google Scholar 

  30. Urakawa, A., Trachsel, F., von Rohr, P.R., Baiker, A.: On-chip Raman analysis of heterogeneous catalytic reaction in supercritical CO2: phase behaviour monitoring and activity profiling. Analyst. 133, 1352–1354 (2008)

    CAS  Google Scholar 

  31. da Silva, A.N., Pinto, R.C.F., Freire, P.T.C., Junior, J.A.L., Oliveira, A.C., Filho, J.M.: Temperature and high pressure effects on the structural features of catalytic nanocomposites oxides by Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 138, 763–773 (2015)

    Google Scholar 

  32. Korhonen, S.T., Bañares, M.A., Fierro, J.L.G., Krause, A.O.I.: Adsorption of methanol as a probe for surface characteristics of zirconia-, alumina-, and zirconia/alumina-supported chromia catalysts. Catal. Today. 126, 235–247 (2007)

    CAS  Google Scholar 

  33. Hu, H., Wachs, I.E.: Catalytic properties of supported molybdenum oxide catalysts: in situ Raman and methanol oxidation studies. J. Phys. Chem. 99, 10911–10922 (1995)

    CAS  Google Scholar 

  34. Li, W., Oyama, S.T.: Ethanol oxidation using ozone over supported manganese oxide catalysts: an in situ laser Raman study. Proc. Stud. Surf. Sci. Catal., 873–882 (1997) https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750852821&partnerID=40&md5=36673441bbe31674fc4ff388e4ec776a

  35. Gao, X., Bañares, M.A., I. E. Wachs: Ethane and N-butane oxidation over supported vanadium oxide catalysts: an in situ UV-visible diffuse reflectance spectroscopic investigation. J. Catal. 188, 325–331 (1999). https://doi.org/10.1006/jcat.1999.2647

    Article  CAS  Google Scholar 

  36. Chase, D.B.: Fourier transform Raman spectroscopy. J. Am. Chem. Soc. 108, 7485–7488 (1986)

    CAS  Google Scholar 

  37. Baurecht, D., Fringeli, U.P.: Quantitative modulated excitation Fourier transform infrared spectroscopy. Rev. Sci. Instrum. 72, 3782–3792 (2001)

    CAS  Google Scholar 

  38. Hartman, T., Wondergem, C.S., Kumar, N., van den Berg, A., Weckhuysen, B.M.: Surface- and tip-enhanced Raman spectroscopy in catalysis. J. Phys. Chem. Lett. 7, 1570–1584 (2016)

    CAS  Google Scholar 

  39. Lombardi, J.R., Birke, R.L.: The theory of surface-enhanced Raman scattering. J. Chem. Phys. 136, 144704 (2012)

    Google Scholar 

  40. Harvey, C.E., Weckhuysen, B.M.: Surface- and tip-enhanced Raman spectroscopy as operando probes for monitoring and understanding heterogeneous catalysis. Catal. Lett. 145, 40–57 (2015)

    CAS  Google Scholar 

  41. Kumar, N., Mignuzzi, S., Su, W., Roy, D.: Tip-enhanced Raman spectroscopy: principles and applications. EPJ Tech. Instrum. 2, 9 (2015)

    Google Scholar 

  42. Waleska, P., Rupp, S., Hess, C.: Operando multiwavelength and time-resolved Raman spectroscopy: structural dynamics of a supported vanadia catalyst at work. J. Phys. Chem. C. 122, 3386–3400 (2018)

    CAS  Google Scholar 

  43. Guerrero-Pérez, M.O., Banares, M.A.: Operando Raman study of alumina-supported Sb-V-O catalyst during propane ammoxidation to acrylonitrile with on-line activity measurement. Chem. Commun. 2, 1292–1293 (2002)

    Google Scholar 

  44. Guerrero-Pérez, M.O., Bañares, M.A.: Operando Raman-Gc studies of alumina-supported Sb-V-O catalysts and role of the preparation method. Catal. Today. 96, 265–272 (2004)

    Google Scholar 

  45. Martínez-Huerta, M.V., Deo, G., Fierro, J.L.G., Bañares, M.A.: Operando Raman-Gc study on the structure−activity relationships in V 5+/Ceo 2 catalyst for ethane oxidative dehydrogenation: the formation of Cevo 4. J. Phys. Chem. C. 112, 11441–11447 (2008)

    Google Scholar 

  46. Fu, D., Dai, W., Xu, X., Mao, W., Su, J., Zhang, Z., Shi, B., Smith, J., Li, P., Xu, J., Han, Y.-F.: Probing the structure evolution of iron-based Fischer–Tropsch to produce olefins by operando Raman spectroscopy. ChemCatChem. 7, 752–756 (2015)

    CAS  Google Scholar 

  47. Wu, Z., Dai, S., Overbury, S.H.: Multiwavelength Raman spectroscopic study of silica-supported vanadium oxide catalysts. J. Phys. Chem. C. 114, 412–422 (2010)

    CAS  Google Scholar 

  48. Wu, Z., Rondinone, A.J., Ivanov, I.N., Overbury, S.H.: Structure of vanadium oxide supported on ceria by multiwavelength Raman spectroscopy. J. Phys. Chem. C. 115, 25368–25378 (2011)

    CAS  Google Scholar 

  49. Wu, Z.: Multi-wavelength Raman spectroscopy study of supported vanadia catalysts: structure identification and quantification. Chin. J. Catal. 35, 1591–1608 (2014)

    CAS  Google Scholar 

  50. Payen, E., Kasztelan, S., Grimblot, J., Bonnelle, J.P.: Study of the reduction of Moo3/gamma-Al2o3 and Wo3/gamma-Al2o3 catalysts by laser Raman spectroscopy. J. Mol. Struct. 143, 259–262 (1986)

    CAS  Google Scholar 

  51. Payen, E., Grimblot, J., Kasztelan, S.: Study of oxidic and reduced alumina-supported molybdate and heptamolybdate species by in situ laser Raman spectroscopy. J. Phys. Chem. 91, 6642–6648 (1987)

    CAS  Google Scholar 

  52. Liu, H., Gaigneaux, E.M., Imoto, H., Shido, T., Iwasawa, Y.: Performance and characterization of novel re – Sb – O catalysts active for the selective oxidation of isobutylene to methacrolein. J. Phys. Chem. B. 104, 2033–2043 (2000)

    CAS  Google Scholar 

  53. Xie, S., Rosynek, M.P., Lunsford, J.H.: Effect of laser heating on the local temperature and composition in Raman spectroscopy: a study of Ba(No3)2 and Bao2 decomposition. Appl. Spectrosc. 53, 1183–1187 (1999)

    CAS  Google Scholar 

  54. Cheng, C.P., Ludowise, J.D., Schrader, G.L.: Controlled-atmosphere rotating cell for in situ studies of catalysts using laser Raman spectroscopy. Appl. Spectrosc. 34, 146–150 (1980)

    CAS  Google Scholar 

  55. Yilbas, B.S.: Chapter 2 – Conduction-limited laser pulsed laser heating: Fourier heating model. In: Yilbas, B.S. (ed.) Laser Heating Applications, pp. 7–51. Elsevier, Boston (2012). https://doi.org/10.1016/B978-0-12-415782-8.00002-4

    Chapter  Google Scholar 

  56. Sheik-Bahae, M., Epstein, R.I.: Laser cooling of solids. Laser Photonics Rev. 3, 67–84 (2009)

    CAS  Google Scholar 

  57. Chua, Y.T., Stair, P.C.: A novel fluidized bed technique for measuring UV Raman spectra of catalysts and adsorbates. J. Catal. 196, 66–72 (2000)

    CAS  Google Scholar 

  58. Puppels, G.J., Huizinga, A., Krabbe, H.W., de Boer, H.A., Gijsbers, G., de Mul, F.F.M.: A high-throughput Raman notch filter set. Rev. Sci. Instrum. 61, 3709–3712 (1990)

    CAS  Google Scholar 

  59. Barron, L.D., Hecht, L., Hug, W., MacIntosh, M.J.: Backscattered Raman optical activity with a CCD detector. J. Am. Chem. Soc. 111, 8731–8732 (1989)

    CAS  Google Scholar 

  60. Richet, P., Gillet, P., Pierre, A., Bouhifd, M.A., Daniel, I., Fiquet, G.: Raman spectroscopy, X-ray diffraction, and phase relationship determinations with a versatile heating cell for measurements up to 3600 K (or 2700 K in air). J. Appl. Phys. 74, 5451–5456 (1993)

    CAS  Google Scholar 

  61. Zouboulis, E.S., Grimsditch, M.: Raman scattering in diamond up to 1900 K. Phys. Rev. B. 43, 12490–12493 (1991)

    CAS  Google Scholar 

  62. Herchen, H., Cappelli, M.A.: First-order Raman spectrum of diamond at high temperatures. Phys. Rev. B. 43, 11740–11744 (1991)

    CAS  Google Scholar 

  63. Alvarenga, A.D., Grimsditch, M., Polian, A.: Raman scattering from cubic boron nitride up to 1600 K. J. Appl. Phys. 72, 1955–1956 (1992)

    CAS  Google Scholar 

  64. Brookes, A., Dyke, J.M., Hendra, P.J., Meehan, S.: The Ft-Raman spectroscopic study of polymers at temperatures in excess of 200°C. Spectrochim. Acta A Mol. Biomol. Spectrosc. 53, 2313–2321 (1997)

    Google Scholar 

  65. Bravo-Suárez, J.J., Srinivasan, P.D.: Design characteristics of in situ and operando ultraviolet-visible and vibrational spectroscopic reaction cells for heterogeneous catalysis. Catal. Rev. 59, 295–445 (2017)

    Google Scholar 

  66. Zobeiri, H., Xu, S., Yue, Y., Zhang, Q., Xie, Y., Wang, X.: Effect of temperature on Raman intensity of Nm-thick Ws2: combined effects of resonance Raman, optical properties, and Interface optical interference. Nanoscale. 12, 6064–6078 (2020)

    CAS  Google Scholar 

  67. Zouboulis, E., Renusch, D., Grimsditch, M.: Advantages of ultraviolet Raman scattering for high temperature investigations. Appl. Phys. Lett. 72, 1–3 (1998)

    CAS  Google Scholar 

  68. Kato, D.: Improvement of Raman spectroscopy by quenching the fluorescence. J. Appl. Phys. 45, 2281–2282 (1974)

    CAS  Google Scholar 

  69. Jeziorowski, H., Knözinger, H.: Laser induced electronic excitation of surface hydroxide ions and scattering background in laser Raman spectra of oxide surfaces. Chem. Phys. Lett. 51, 519–522 (1977)

    CAS  Google Scholar 

  70. Jeziorowski, H., Knoezinger, H.: Raman and ultraviolet spectroscopic characterization of molybdena on alumina catalysts. J. Phys. Chem. 83, 1166–1173 (1979)

    CAS  Google Scholar 

  71. Chase, B.: Fourier transform Raman spectroscopy. Anal. Chem. 59, 881A–889A (1987)

    CAS  Google Scholar 

  72. Stair, P.C.: The application of UV Raman spectroscopy for the characterization of catalysts and catalytic reactions. In: Gates, B.C., Knözinger, H. (eds.) Advances in Catalysis, vol. 51, pp. 75–98. Academic Press, Amsterdam (2007)

    Google Scholar 

  73. Bruckner, S., Jeziorowski, H., Knözinger, H.: Frequency modulation Raman spectroscopy. Chem. Phys. Lett. 105, 218–222 (1984)

    Google Scholar 

  74. Giles, J.H., Gilmore, D.A., Denton, M.B.: Quantitative analysis using Raman spectroscopy without spectral standardization. J. Raman Spectrosc. 30, 767–771 (1999)

    CAS  Google Scholar 

  75. Wu, Z., Zhang, C., Stair, P.C.: Influence of absorption on quantitative analysis in Raman spectroscopy. Catal. Today. 113, 40–47 (2006)

    CAS  Google Scholar 

  76. Tinnemans, S.J., Kox, M.H.F., Nijhuis, T.A., Visser, T., Weckhuysen, B.M.: Real time quantitative Raman spectroscopy of supported metal oxide catalysts without the need of an internal standard. Phys. Chem. Chem. Phys. 7, 211–216 (2005)

    CAS  Google Scholar 

  77. Chan, S.S., Wachs, I.E., Murrell, L.L.: Relative Raman cross-sections of tungsten oxides: [Wo3, Al2(Wo4)3 and Wo3 Al2o3]. J. Catal. 90, 150–155 (1984)

    CAS  Google Scholar 

  78. Lin, L.-T., Mann, C.K., Vickers, T.J.: Feasibility of quantitative UV resonance Raman spectroscopy with a KRF excimer laser. Appl. Spectrosc. 41, 422–427 (1987)

    CAS  Google Scholar 

  79. Bergwerff, J.A., Visser, T., Leliveld, G., Rossenaar, B.D., de Jong, K.P., Weckhuysen, B.M.: Envisaging the physicochemical processes during the preparation of supported catalysts: Raman microscopy on the impregnation of Mo onto Al2o3 extrudates. J. Am. Chem. Soc. 126, 14548–14556 (2004)

    CAS  Google Scholar 

  80. Aarnoutse, P.J., Westerhuis, J.A.: Quantitative Raman reaction monitoring using the solvent as internal standard. Anal. Chem. 77, 1228–1236 (2005)

    CAS  Google Scholar 

  81. Kuba, S., Knözinger, H.: Time-resolved in situ Raman spectroscopy of working catalysts: sulfated and tungstated zirconia. J. Raman Spectrosc. 33, 325–332 (2002)

    CAS  Google Scholar 

  82. Dou, X., Takama, T., Yamaguchi, Y., Yamamoto, H., Ozaki, Y.: Enzyme immunoassay utilizing surface-enhanced Raman scattering of the enzyme reaction product. Anal. Chem. 69, 1492–1495 (1997)

    CAS  Google Scholar 

  83. Wu, Z., Stair, P.C., Rugmini, S., Jackson, S.D.: Raman spectroscopic study of V/Θ-Al2o3 catalysts: quantification of surface vanadia species and their structure reduced by hydrogen. J. Phys. Chem. C. 111, 16460–16469 (2007)

    CAS  Google Scholar 

  84. Seki, H.: The effect of Co on the UHV Sers of pyridine on silver. J. Vac. Sci. Technol. 20, 584–587 (1982)

    CAS  Google Scholar 

  85. Kudelski, A., Pettinger, B.: Fluctuations of surface-enhanced Raman spectra of co adsorbed on gold substrates. Chem. Phys. Lett. 383, 76–79 (2004)

    CAS  Google Scholar 

  86. Cai, W.-B., She, C.-X., Ren, B., Yao, J.-L., Tian, Z.-W., Tian, Z.-Q.: Surface Raman spectroscopic investigation of pyridine adsorption at platinum electrodes—effects of potential and electrolyte. J. Chem. Soc. Faraday Trans. 94, 3127–3133 (1998)

    CAS  Google Scholar 

  87. Góra-Marek, K., Datka, J.: IR studies of OH groups in mesoporous aluminosilicates. Appl. Catal. A Gen. 302, 104–109 (2006)

    Google Scholar 

  88. Lamberti, C., Zecchina, A., Groppo, E., Bordiga, S.: Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 39, 4951–5001 (2010)

    CAS  Google Scholar 

  89. Ferraro, J.R.: Introductory Raman Spectroscopy. Elsevier, Amsterdam (2003)

    Google Scholar 

  90. Wiercigroch, E., Szafraniec, E., Czamara, K., Pacia, M.Z., Majzner, K., Kochan, K., Kaczor, A., Baranska, M., Malek, K.: Raman and infrared spectroscopy of carbohydrates: a review. Spectrochim. Acta A Mol. Biomol. Spectrosc. 185, 317–335 (2017)

    CAS  Google Scholar 

  91. Fan, F., Feng, Z., Li, G., Sun, K., Ying, P., Li, C.: In situ UV Raman spectroscopic studies on the synthesis mechanism of zeolite X. Chem. Eur. J. 14, 5125–5129 (2008)

    CAS  Google Scholar 

  92. Mougin, J., Le Bihan, T., Lucazeau, G.: High-pressure study of Cr2o3 obtained by high-temperature oxidation by X-ray diffraction and Raman spectroscopy. J. Phys. Chem. Solids. 62, 553–563 (2001)

    CAS  Google Scholar 

  93. Vlasko-Vlasov, V., Joshi-Imre, A., Bahns, J.T., Chen, L., Ocola, L., Welp, U.: Liquid cell with plasmon lenses for surface enhanced Raman spectroscopy. Appl. Phys. Lett. 96, 203103 (2010)

    Google Scholar 

  94. Silverwood, I.P., Hamilton, N.G., McFarlane, A.R., Kapitán, J., Hecht, L., Norris, E.L., Mark Ormerod, R., Frost, C.D., Parker, S.F., Lennon, D.: Application of inelastic neutron scattering to studies of CO2 reforming of methane over alumina-supported nickel and gold-doped nickel catalysts. Phys. Chem. Chem. Phys. 14, 15214–15225 (2012)

    CAS  Google Scholar 

  95. Le Bourdon, G., Adar, F., Moreau, M., Morel, S., Reffner, J., Mamede, A.S., Dujardin, C., Payen, E.: In situ characterization by Raman and IR vibrational spectroscopies on a single instrument: denox reaction over a Pd/Γ-Al2O3 catalyst. Phys. Chem. Chem. Phys. 5, 4441–4444 (2003)

    Google Scholar 

  96. Okamoto, Y., Imanaka, T.: Interaction chemistry between molybdena and alumina: infrared studies of surface hydroxyl groups and adsorbed carbon dioxide on Aluminas modified with molybdate, sulfate, or fluorine anions. J. Phys. Chem. 92, 7102–7112 (1988)

    CAS  Google Scholar 

  97. Kerkhof, F.P.J.M., Moulijn, J.A., Thomas, R.: Laser-Raman spectroscopy of the alumina-supported rhenium oxide metathesis catalyst. J. Catal. 56, 279–283 (1979)

    CAS  Google Scholar 

  98. Wang, L., Hall, W.: On the genesis of molybdena-alumina catalyst. J. Catal. 66, 251–255 (1980)

    CAS  Google Scholar 

  99. Wu, Z., Kim, H.-S., Stair, P.C., Rugmini, S., Jackson, S.D.: On the structure of vanadium oxide supported on aluminas: UV and visible Raman spectroscopy, UV−visible diffuse reflectance spectroscopy, and temperature-programmed reduction studies. J. Phys. Chem. B. 109, 2793–2800 (2005)

    CAS  Google Scholar 

  100. Lewandowska, A.E., Bañares, M.A., Khabibulin, D.F., Lapina, O.B.: Precursor effect on the molecular structure, reactivity, and stability of alumina-supported vanadia. J. Phys. Chem. C. 113, 20648–20656 (2009)

    CAS  Google Scholar 

  101. Wang, L., Hall, W.K.: The preparation and properties of rhenia-alumina catalysts. J. Catal. 82, 177–184 (1983)

    CAS  Google Scholar 

  102. Williams, C.C., Ekerdt, J.G., Jehng, J.M., Hardcastle, F.D., Wachs, I.E.: A Raman and ultraviolet diffuse reflectance spectroscopic investigation of alumina-supported molybdenum oxide. J. Phys. Chem. 95, 8791–8797 (1991)

    CAS  Google Scholar 

  103. Knözinger, H., Jezlorowski, H.: Raman spectra of molybdenum oxide supported on the surface of aluminas. J. Phys. Chem. 82, 2002–2005 (1978)

    Google Scholar 

  104. Agudo, A.L., Gil, F.J., Calleja, J.M., Fernández, V.: Raman spectroscopic study of MoO3/Γ-Al2O3 and Coo(or NiO)-MoO3/Γ-Al2O3 oxide catalysts prepared by different methods. J. Raman Spectrosc. 11, 454–458 (1981)

    Google Scholar 

  105. Leyrer, J., Mey, D., Knözinger, H.: Spreading behavior of molybdenum trioxide on alumina and silica: a Raman microscopy study. J. Catal. 124, 349–356 (1990)

    CAS  Google Scholar 

  106. Hashimoto, K., Badarla, V.R., Kawai, A., Ideguchi, T.: Complementary vibrational spectroscopy. Nat. Commun. 10, 4411 (2019)

    Google Scholar 

  107. Brown, F.R., Makovsky, L.E., Rhee, K.H.: Rotating vacuum cell for Raman spectroscopy. Appl. Spectrosc. 31, 563–565 (1977)

    CAS  Google Scholar 

  108. Li, M., Feng, Z., Xiong, G., Ying, P., Xin, Q., Li, C.: Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy. J. Phys. Chem. B. 105, 8107–8111 (2001)

    CAS  Google Scholar 

  109. Schrader, B., Hoffmann, A., Keller, S.: Near-infrared Fourier transform Raman spectroscopy: facing absorption and background. Spectrochim. Acta A: Mol. Spectrosc. 47, 1135–1148 (1991)

    Google Scholar 

  110. Kubelka, P., Munk, F.J.Z.T.P.: An article on optics of paint layers. Fuer Tekn. Physik. 12, 593–609 (1931)

    Google Scholar 

  111. Yassin, O.A., Alamri, S.N., Joraid, A.A.: Effect of particle size and laser power on the Raman spectra of CuAlO2 delafossite nanoparticles. J. Phys. D. Appl. Phys. 46, 235301 (2013)

    Google Scholar 

  112. Graham, G.W., Weber, W.H., Peters, C.R., Usmen, R.: Empirical method for determining CeO2-particle size in catalysts by Raman spectroscopy. J. Catal. 130, 310–313 (1991)

    CAS  Google Scholar 

  113. Schlotter, N.: Analytical Raman Spectroscopy. Chemical Analysis Series. Grasselli, J.G., Bulkin, B.J. (eds.) vol. 114, Winefordner, J.D., Kolthoff, I.M. (Series editors). Wiley, New York, (1991) (ISBN 0-471-51955-3). 462 pp. (1992)

    Google Scholar 

  114. Schwab, S.D., McCreery, R.L.: Versatile, efficient Raman sampling with fiber optics. Anal. Chem. 56, 2199–2204 (1984)

    CAS  Google Scholar 

  115. Newman, C.D., Bret, G.G., McCreery, R.L.: Fiber-optic sampling combined with an imaging spectrograph for routine Raman spectroscopy. Appl. Spectrosc. 46, 262–265 (1992)

    CAS  Google Scholar 

  116. Borio, V.G., Vinha, R., Nicolau, R.A., de Oliveira, H.P.M., de Lima, C.J., Silveira, L.: Quantitative evaluation of acetaminophen in oral solutions by dispersive Raman spectroscopy for quality control. Spectr.-Int. J. 27, 215–228 (2012)

    CAS  Google Scholar 

  117. Santos, L.F., Wolthuis, R., Koljenović, S., Almeida, R.M., Puppels, G.J.: Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region. Anal. Chem. 77, 6747–6752 (2005)

    CAS  Google Scholar 

  118. Woodward, L.A., Waters, D.N.: A water-cooled mercury arc lamp for the excitation of Raman spectra. J. Sci. Instrum. 34, 222–224 (1957)

    CAS  Google Scholar 

  119. Williamson, J.M., Bowling, R.J., McCreery, R.L.: Near-infrared Raman spectroscopy with a 783-NM diode laser and CCD array detector. Appl. Spectrosc. 43, 372–375 (1989)

    CAS  Google Scholar 

  120. Fujiwara, M., Hamaguchi, H., Tasumi, M.: Measurements of spontaneous Raman scattering with Nd:Yag 1064-nm laser light. Appl. Spectrosc. 40, 137–139 (1986)

    CAS  Google Scholar 

  121. The High-Power Ion Laser from Coherent. Inc. https://www.coherent.com/lasers/main/ion-lasers

  122. Wang, Y., McCreery, R.L.: Evaluation of a diode laser/charge coupled device spectrometer for near-infrared Raman spectroscopy. Anal. Chem. 61, 2647–2651 (1989)

    CAS  Google Scholar 

  123. Robert, B.: Resonance Raman spectroscopy. Photosynth. Res. 101, 147–155 (2009)

    CAS  Google Scholar 

  124. Kagan, M.R., McCreery, R.L.: Reduction of fluorescence interference in Raman spectroscopy via analyte adsorption on graphitic carbon. Anal. Chem. 66, 4159–4165 (1994)

    CAS  Google Scholar 

  125. Li, C., Stair, P.C.: Ultraviolet Raman spectroscopy characterization of coke formation in zeolites. Catal. Today. 33, 353–360 (1997)

    CAS  Google Scholar 

  126. Li, C., Stair, P.C.: An advance in Raman studies of catalysts: ultraviolet resonance Raman spectroscopy. In: Hightower, J.W., Nicholas Delgass, W., Iglesia, E., Bell, A.T. (eds.) Studies in Surface Science and Catalysis, vol. 101, pp. 881–890, Elsevier, Amsterdam (1996)

    Google Scholar 

  127. Moskovits, M.: Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985)

    CAS  Google Scholar 

  128. van Schrojenstein Lantman, E.M., Deckert-Gaudig, T., Mank, A.J.G., Deckert, V., B. M.: Weckhuysen: catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012)

    Google Scholar 

  129. Kumar, N., Stephanidis, B., Zenobi, R., Wain, A.J., Roy, D.: Nanoscale mapping of catalytic activity using tip-enhanced Raman spectroscopy. Nanoscale. 7, 7133–7137 (2015)

    CAS  Google Scholar 

  130. Avouris, P., Demuth, J.E.: Electronic excitations of benzene, pyridine, and pyrazine adsorbed on Ag(111). J. Chem. Phys. 75, 4783–4794 (1981)

    CAS  Google Scholar 

  131. Albrecht, M.G., Creighton, J.A.: Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977)

    CAS  Google Scholar 

  132. Jeanmaire, D.L., Van Duyne, R.P.: Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977)

    CAS  Google Scholar 

  133. Harvey, C.E., van Schrojenstein Lantman, E.M., Mank, A.J.G., Weckhuysen, B.M.: An integrated AFM-Raman instrument for studying heterogeneous catalytic systems: a first showcase. Chem. Commun. 48, 1742–1744 (2012)

    CAS  Google Scholar 

  134. Łojewska, J., Knapik, A., Kołodziej, A., Jodłowski, P.: Far field combined AFM and micro-Raman imaging for characterisation of surface of structured catalysts: example of Pd doped CoOx catalysts on precalcined kanthal steel. Top. Catal. 56, 1088–1095 (2013)

    Google Scholar 

  135. Zhang, R., Zhang, Y., Dong, Z.C., Jiang, S., Zhang, C., Chen, L.G., Zhang, L., Liao, Y., Aizpurua, J., Luo, Y., Yang, J.L., Hou, J.G.: Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature. 498, 82 (2013)

    CAS  Google Scholar 

  136. Zumbusch, A., Holtom, G.R., Xie, X.S.: Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999)

    CAS  Google Scholar 

  137. Min, W., Lu, S., Holtom, G.R., Xie, X.S.: Triple-resonance coherent anti-stokes Raman scattering microspectroscopy. ChemPhysChem. 10, 344–347 (2009)

    CAS  Google Scholar 

  138. Linkam Scientific Instruments – CCR1000 Stage. http://www.linkam.co.uk/ccr1000-features

  139. Beato, P., Schachtl, E., Barbera, K., Bonino, F., Bordiga, S.: Operando Raman spectroscopy applying novel fluidized bed micro-reactor technology. Catal. Today. 205, 128–133 (2013)

    CAS  Google Scholar 

  140. Vannice, M.A., Joyce, W.H.: Kinetics of Catalytic Reactions, vol. 134. Springer, New York (2005)

    Google Scholar 

  141. Kapteijn, F., Moulijn, J.: Laboratory Catalytic Reactors: Aspects of Catalyst Testing, 2019–2045 (2008)

    Google Scholar 

  142. Berty, J.J.A.I.C.: Laboratory reactors for catalytic studies. Appl. Ind. Catal. 1, 41–67 (1983)

    CAS  Google Scholar 

  143. Knitter, R., Liauw, M.A.: Ceramic microreactors for heterogeneously catalysed gas-phase reactions. Lab Chip. 4, 378–383 (2004)

    CAS  Google Scholar 

  144. Maghsoumi, A., Ravanelli, A., Consonni, F., Nanni, F., Lucotti, A., Tommasini, M., Donazzi, A., Maestri, M.: Design and testing of an operando-Raman annular reactor for kinetic studies in heterogeneous catalysis. React. Chem. Eng. 2, 908–918 (2017)

    CAS  Google Scholar 

  145. Villa, P.L., Trifirò, F., Pasquon, I.: Study of the interaction between CoMoO4 and 341-1341-1341-1-Al2O3 by Raman spectroscopy. React. Kinet. Catal. Lett. 1, 341–344 (1974)

    CAS  Google Scholar 

  146. Chan, S.S., Bell, A.T.: Characterization of the preparation of Pd SiO2 and Pd La2O3 by laser Raman spectroscopy. J. Catal. 89, 433–441 (1984)

    CAS  Google Scholar 

  147. Roozeboom, F., Gellings, P.J., Medema, J.: Vanadium oxide monolayer catalysts. Z. Phys. Chem. 111, 215–224 (1978)

    CAS  Google Scholar 

  148. Schrader Jr., G.L., Hill Jr., C.G.: Variable temperature sample cell and optical mount for laser Raman studies of adsorbed species. Rev. Sci. Instrum. 46, 1335–1337 (1975)

    CAS  Google Scholar 

  149. Krasser, W., Ranade, A., Koglin, E.: Low temperature Raman measurements of carbon monoxide adsorbed on nickel at high pressures. J. Raman Spectrosc. 6, 209–212 (1977)

    CAS  Google Scholar 

  150. Tian, H., Roberts, C.A., Wachs, I.E.: Molecular structural determination of molybdena in different environments: aqueous solutions, bulk mixed oxides, and supported MoO3 catalysts. J. Phys. Chem. C. 114, 14110–14120 (2010)

    CAS  Google Scholar 

  151. Chan, S.S., Wachs, I.E., Murrell, L.L., Wang, L., Hall, W.K.: In situ laser Raman spectroscopy of supported metal oxides. J. Phys. Chem. 88, 5831–5835 (1984)

    CAS  Google Scholar 

  152. Stencel, J.M., Makovsky, L.E., Sarkus, T.A., de Vries, J., Thomas, R., Moulijn, J.A.: Raman spectroscopic investigation of the effect of H2O on the molybdenum surface species in MoO3 Al2O3 catalysts. J. Catal. 90, 314–322 (1984)

    CAS  Google Scholar 

  153. Hardcastle, F.D., Wachs, I.E.: Raman spectroscopy of chromium oxide supported on Al2o3, Tio2 and Sio2: a comparative study. J. Mol. Catal. 46, 173–186 (1988)

    Google Scholar 

  154. Jehng, J.M., Wachs, I.E.: Niobium oxide solution chemistry. J. Raman Spectrosc. 22, 83–89 (1991)

    CAS  Google Scholar 

  155. Wu, Z., Li, M., Overbury, S.H.: A Raman spectroscopic study of the speciation of vanadia supported on ceria nanocrystals with defined surface planes. ChemCatChem. 4, 1653–1661 (2012)

    CAS  Google Scholar 

  156. Mestl, G., Rosynek, M.P., Lunsford, J.H.: Decomposition of nitric oxide over barium oxide supported on magnesium oxide. 2. In situ Raman characterization of phases present during the catalytic reaction. J. Phys. Chem. B. 101, 9321–9328 (1997)

    CAS  Google Scholar 

  157. Pushkarev, V.V., Kovalchuk, V.I., D'Itri, J.L.: Probing defect sites on the CeO2 surface with dioxygen. J. Phys. Chem. B. 108, 5341–5348 (2004)

    CAS  Google Scholar 

  158. Wu, Z., Li, M., Howe, J., Meyer, H.M., Overbury, S.H.: Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir. 26, 16595–16606 (2010)

    CAS  Google Scholar 

  159. Weckhuysen, B.M., Wachs, I.E.: In situ Raman spectroscopy of supported chromium oxide catalysts: reactivity studies with methanol and butane. J. Phys. Chem. 100, 14437–14442 (1996)

    CAS  Google Scholar 

  160. Bañares, M.A., Guerrero-Pérez, M.O., Fierro, J.L.G., Cortez, G.G.: Raman spectroscopy during catalytic operations with on-line activity measurement (operando spectroscopy): a method for understanding the active centres of cations supported on porous materials. J. Mater. Chem. 12, 3337–3342 (2002)

    Google Scholar 

  161. Dumesic, J.A., Topsoe, N.Y., Slabiak, T., Morsing, P., Clausen, B.S., Törqvist, E., Topsoe, H.: Microiunetic analysis of the selective catalytic reduction (SCR) of nitric oxide over vanadia/titania-based catalysts. In: Guczi, L., Solymosi, F., TÉTÉNyi, P. (eds.) Studies in Surface Science and Catalysis, vol. 75, pp. 1325–1337. Elsevier, Amsterdam (1993)

    Google Scholar 

  162. Bañares, M.A., Khatib, S.J.: Structure–activity relationships in alumina-supported molybdena–vanadia catalysts for propane oxidative dehydrogenation. Catal. Today. 96, 251–257 (2004)

    Google Scholar 

  163. Hutchings, G.J., Desmartin-Chomel, A., Olier, R., Volta, J.-C.: Role of the product in the transformation of a catalyst to its active state. Nature. 368, 41–45 (1994)

    CAS  Google Scholar 

  164. Cavani, F., Caldarelli, A., Luciani, S., Cortelli, C., Cruzzolin, F.: Selective oxidation of O-xylene to phthalic anhydride: from conventional catalysts and technologies toward innovative approaches. In: Catalysis: Volume 24, vol. 24, pp. 204–222. The Royal Society of Chemistry, London (2012)

    Google Scholar 

  165. Vogelaar, B.M., van Langeveld, A.D., Eijsbouts, S., Moulijn, J.A.: Analysis of coke deposition profiles in commercial spent hydroprocessing catalysts using Raman spectroscopy. Fuel. 86, 1122–1129 (2007)

    CAS  Google Scholar 

  166. Latorre, F., Kupfer, S., Bocklitz, T., Kinzel, D., Trautmann, S., Gräfe, S., Deckert, V.: Spatial resolution of tip-enhanced Raman spectroscopy – DFT assessment of the chemical effect. Nanoscale. 8, 10229–10239 (2016)

    CAS  Google Scholar 

  167. Urakawa, A., Bürgi, T., Baiker, A.: Sensitivity enhancement and dynamic behavior analysis by modulation excitation spectroscopy: principle and application in heterogeneous catalysis. Chem. Eng. Sci. 63, 4902–4909 (2008)

    CAS  Google Scholar 

  168. Müller, P., Hermans, I.: Applications of modulation excitation spectroscopy in heterogeneous catalysis. Ind. Eng. Chem. Res. 56, 1123–1136 (2017)

    Google Scholar 

  169. Urakawa, A., Van Beek, W., Monrabal-Capilla, M., Galán-Mascarós, J.R., Palin, L., Milanesio, M.: Combined, modulation enhanced X-ray powder diffraction and Raman spectroscopic study of structural transitions in the spin crossover material [Fe(Htrz)2(Trz)](Bf4). J. Phys. Chem. C. 115, 1323–1329 (2011)

    CAS  Google Scholar 

  170. Nuguid, R.J.G., Ferri, D., Marberger, A., Nachtegaal, M., Kröcher, O.: Modulated excitation Raman spectroscopy of V2O5/TiO2: mechanistic insights into the selective catalytic reduction of NO with NH3. ACS Catal. 9, 6814–6820 (2019)

    CAS  Google Scholar 

  171. Bañares, M.A., Cardoso, J.H., Agulló-Rueda, F., Correa-Bueno, J.M., Fierro, J.L.G.: Dynamic states of V-oxide species: reducibility and performance for methane oxidation on V2O5/SiO2 catalysts as a function of coverage. Catal. Lett. 64, 191–196 (2000)

    Google Scholar 

  172. Hou, X., Zhao, L., Diao, Z.: Roles of alkenes and coke formation in the deactivation of ZSM-5 zeolites during N-pentane catalytic cracking. Catal. Lett. 150, 2716 (2020). https://doi.org/10.1007/s10562-020-03173-4

    Article  CAS  Google Scholar 

  173. Wu, Z., Stair, P.C.: UV Raman spectroscopic studies of V/Θ-Al2o3 catalysts in butane dehydrogenation. J. Catal. 237, 220–229 (2006)

    CAS  Google Scholar 

  174. Li, C., Stair, P.C.: Ultraviolet Raman spectroscopy characterization of sulfated zirconia catalysts: fresh, deactivated and regenerated. Catal. Lett. 36, 119–123 (1996)

    CAS  Google Scholar 

  175. Guerra, P., Zaker, A., Duan, P., Maag, A.R., Tompsett, G.A., Brown, A.B., Schmidt-Rohr, K., Timko, M.T.: Analysis of coke formed during zeolite-catalyzed supercritical dodecane cracking: effect of supercritical water. Appl. Catal. A Gen. 590, 117330 (2020)

    CAS  Google Scholar 

  176. Egashira, M., Matsuo, K., Kagawa, S., Seiyama, T.: Phase diagram of the system Bi2O3–MoO3. J. Catal. 58, 409–418 (1979)

    CAS  Google Scholar 

  177. Theobald, F., Laarif, A., Tachez, M.: Bismuth molybdate: the Γ′-Bi2O3 · MoO3 polymorph. J. Catal. 73, 357–360 (1982)

    CAS  Google Scholar 

  178. Carson, D., Coudurier, G., Forissier, M., Vedrine, J.C., Laarif, A., Theobald, F.: Synergy effects in the catalytic properties of bismuth molybdates. J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condensed Phases. 79, 1921–1929 (1983)

    CAS  Google Scholar 

  179. Kumar, J., Ruckenstein, E.: Thermal decomposition of the 1:1 bismuth molybdate and its implications for catalytic oxidation. J. Solid State Chem. 31, 41–46 (1980)

    CAS  Google Scholar 

  180. Batist, P.A., van de Moesdijk, C.G.M., Matsuura, I., Schuit, G.C.A.: The catalytic oxidation of 1-butene over bismuth molybdates: promoters for the Bi2O3·3MoO3 catalyst. J. Catal. 20, 40–57 (1971)

    CAS  Google Scholar 

  181. Snyder, T.P., Hill, C.G.: Stability of bismuth molybdate catalysts at elevated temperatures in air and under reaction conditions. J. Catal. 132, 536–555 (1991)

    CAS  Google Scholar 

  182. Mestl, G.: In situ Raman spectroscopy for the characterization of MoVW mixed oxide catalysts. J. Raman Spectrosc. 33, 333–347 (2002)

    CAS  Google Scholar 

  183. Mutz, B., Sprenger, P., Wang, W., Wang, D., Kleist, W., Grunwaldt, J.-D.: Operando Raman spectroscopy on CO2 Methanation over alumina-supported Ni, Ni3Fe and NiRh0.1 catalysts: role of carbon formation as possible deactivation pathway. Appl. Catal. A Gen. 556, 160–171 (2018)

    CAS  Google Scholar 

  184. Stavitski, E., Kox, M.H.F., Swart, I., de Groot, F.M.F., Weckhuysen, B.M.: In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals. Angew. Chem. 120, 3599–3603 (2008)

    Google Scholar 

  185. Brückner, A.: Killing three birds with one stone—simultaneous operando EPR/UV-Vis/Raman spectroscopy for monitoring catalytic reactions. Chem. Commun., 1761 (2005). https://doi.org/10.1039/B418790C1761-1763

  186. Dieterle, M., Weinberg, G., Mestl, G.: Raman spectroscopy of molybdenum oxides part I. structural characterization of oxygen defects in MoO3−X by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Phys. Chem. Chem. Phys. 4, 812–821 (2002)

    CAS  Google Scholar 

  187. Beale, A.M., van der Eerden, A.M.J., Kervinen, K., Newton, M.A., Weckhuysen, B.M.: Adding a third dimension to operando spectroscopy: a combined UV-VIS, Raman and XAFS setup to study heterogeneous catalysts under working conditions. Chem. Commun., 3015 (2005). https://doi.org/10.1039/B504027B3015-3017

  188. van Beek, W., Safonova, O.V., Wiker, G., Emerich, H.: SNBL, a dedicated beamline for combined in situ X-ray diffraction, X-ray absorption and Raman scattering experiments. Phase Transit. 84, 726–732 (2011)

    Google Scholar 

  189. Cats, K.H., Weckhuysen, B.M.: Combined operando X-ray diffraction/Raman spectroscopy of catalytic solids in the laboratory: the Co/Tio2 Fischer–Tropsch synthesis catalyst showcase. ChemCatChem. 8, 1531–1542 (2016)

    CAS  Google Scholar 

  190. Boccaleri, E., Carniato, F., Croce, G., Viterbo, D., van Beek, W., Emerich, H., Milanesio, M.: In situ simultaneous Raman/high-resolution X-ray powder diffraction study of transformations occurring in materials at non-ambient conditions. J. Appl. Crystallogr. 40, 684–693 (2007)

    CAS  Google Scholar 

  191. Tardif, S., Pavlenko, E., Quazuguel, L., Boniface, M., Maréchal, M., Micha, J.-S., Gonon, L., Mareau, V., Gebel, G., Bayle-Guillemaud, P., Rieutord, F., Lyonnard, S.: Operando Raman spectroscopy and synchrotron X-ray diffraction of lithiation/delithiation in silicon nanoparticle anodes. ACS Nano. 11, 11306–11316 (2017)

    CAS  Google Scholar 

  192. Yao, H., Cheng, H., Gao, X.J., Li, C., Cui, R., Huang, H., Guo, X., Li, X., Zhang, L., Liu, B., Xu, B., Dong, J., Gao, X., Li, Y., Sun, B.: In situ synchrotron X-ray diffraction and Raman spectroscopy studies of Gd@C82–S8 under high pressure. J. Phys. Chem. C. 122, 10992–10998 (2018)

    CAS  Google Scholar 

  193. Jiang, J., Wu, X., Li, D., Ma, B., Liu, R., Wang, X., Zhang, J., Zhu, H., Cui, Q.: High pressure Raman scattering and synchrotron X-ray diffraction studies of benzyl azide. J. Phys. Chem. B. 119, 513–518 (2015)

    CAS  Google Scholar 

  194. Briois, V., Vantelon, D., Villain, F., Couzinet, B., Flank, A.-M., Lagarde, P.: Combining two structural techniques on the micrometer scale: micro-XAS and micro-Raman spectroscopy. J. Synchrotron Radiat. 14, 403–408 (2007)

    CAS  Google Scholar 

  195. Rastogi, S., Goossens, J.G.P., Lemstra, P.J.: An in situ SAXS/WAXS/Raman spectroscopy study on the phase behavior of syndiotactic polystyrene (SPS)/solvent systems: compound formation and solvent (dis)ordering. Macromolecules. 31, 2983–2998 (1998)

    CAS  Google Scholar 

  196. Martel, A., Burghammer, M., Davies, R.J., Di Cola, E., Vendrely, C., Riekel, C.: Silk fiber assembly studied by synchrotron radiation SAXS/WAXS and Raman spectroscopy. J. Am. Chem. Soc. 130, 17070–17074 (2008)

    CAS  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Science program. ZW is partly supported by the Center for Nanophase Materials (CNMS), which is a US Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory.

Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The US Government retains, and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript or allow others to do so, for US Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zili Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moon, J., Li, M., Ramirez-Cuesta, A.J., Wu, Z. (2023). Raman Spectroscopy. In: Wachs, I.E., Bañares, M.A. (eds) Springer Handbook of Advanced Catalyst Characterization. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-07125-6_4

Download citation

Publish with us

Policies and ethics