Skip to main content
Log in

Raman study of the variation in anatase structure of TiO2 nanopowders due to the changes of sol–gel synthesis conditions

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

TiO2 nanopowders were produced by sol–gel technique under different synthesis conditions. XRD results have shown that obtained nanopowders are in anatase phase, with the presence of a small amount of highly disordered brookite phase, whereas nanocrystallite size and amount of brookite slightly depend on sol–gel synthesis conditions. Raman measurements confirm these results. The analyses of the shift and width of the most intensive anatase E g Raman mode by phonon confinement model suggest that anatase crystallite size should be in the range between 11 and 15 nm, what is in excellent correlation with XRD results. Obtained results have shown that Raman spectroscopy is a highly sensitive method for the estimation of anatase crystallite size as well as brookite content in TiO2 nanopowders synthesized by variable sol–gel synthesis conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

XRD:

X-ray diffraction

PCM:

Phonon confinement model

JCPDS:

Joint committee on powder diffraction standards

References

  1. Venz PA, Kloprogge JT, Frost RL (2000) Langmuir 16:4962. doi:10.1021/la990830u

    Article  CAS  Google Scholar 

  2. Murugan AV, Samuel V, Ravi V (2006) Mater Lett 60:479. doi:10.1016/j.matlet.2005.09.017

    Article  CAS  Google Scholar 

  3. Sakka S (2006) J Sol-Gel Sci Technol 37:135. doi:10.1007/s10971-006-6433-z

    Article  CAS  Google Scholar 

  4. Hart JN, Menzies D, Cheng Y-B, Simon GP, Spiccia L (2006) J Sol-Gel Sci Technol 40:45. doi:10.1007/s10971-006-8387-6

    Article  CAS  Google Scholar 

  5. Kim I-D, Rothschild A, Yang D-J, Tuller HL (2008) Sens Actuators B Chem 130:9. doi:10.1016/j.snb.2007.07.092

    Article  CAS  Google Scholar 

  6. Granqvist CG, Azens A, Isidorsson J, Kharrazi M, Kullman L, Lindström T, Niklasson GA, Ribbing C-G, Rönnow D, Strømme Mattsson M, Veszelei M (1997) J Non-Cryst Solids 218:273. doi:10.1016/S0022-3093(97)00145-2

    Article  ADS  CAS  Google Scholar 

  7. Zhang J, Wang X, Zheng W-T, Kong X-G, Sun Y-J, Wang X (2007) Mater Lett 61:1658. doi:10.1016/j.matlet.2006.07.093

    Article  CAS  Google Scholar 

  8. Venkatachalam N, Palanichamy M, Arabindoo B, Murugesan V (2007) Mater Chem Phys 104:454. doi:10.1016/j.matchemphys.2007.04.003

    Article  CAS  Google Scholar 

  9. Gouadec G, Colomban P (2007) Prog Cryst Growth Char Mater 53:1

    Article  CAS  Google Scholar 

  10. Zhang WF, He YL, Zhang MS, Yin Z, Chen Q (2000) J Phys D Appl Phys 33:912. doi:10.1088/0022-3727/33/8/305

    Article  ADS  CAS  Google Scholar 

  11. Du YL, Deng Y, Zhang MS (2006) J Phys Chem Solids 67:2405. doi:10.1016/j.jpcs.2006.06.020

    Article  ADS  CAS  Google Scholar 

  12. Gao K (2007) Phys B 398:33. doi:10.1016/j.physb.2007.04.013

    Article  ADS  CAS  Google Scholar 

  13. Zhang J, Li MJ, Feng ZC, Chen J, Li C (2006) J Phys Chem B 110:927. doi:10.1021/jp0552473

    Article  PubMed  CAS  Google Scholar 

  14. Rodriguez-Carvajal J (1998) FullProf computer program. ftp://charybde.saclay.cea.fr/pub/divers/fullprof.98/windows/winfp98.zip

  15. Kremenovic A, Blanusa J, Antic B, Colomban P, Kahlenberg V, Jovalekic C, Dukic J (2007) Nanotechnology 18:145616

    Article  ADS  CAS  Google Scholar 

  16. Lakshmi BB, Dorhout PK, Martin CR (1996) Chem Mater 9:857. doi:10.1021/cm9605577

    Article  Google Scholar 

  17. Zhang W, Chen S, Yu S, Yin Y (2007) J Cryst Growth 308:122. doi:10.1016/j.jcrysgro.2007.07.053

    Article  ADS  CAS  Google Scholar 

  18. Aruna ST, Tirosh S, Zaban A (2000) J Mater Chem 10:2388. doi:10.1039/b001718n

    Article  CAS  Google Scholar 

  19. Sun J, Gao L (2002) J Am Ceram Soc 85:2382. doi:10.1111/j.1151-2916.2002.tb00467.x

    Article  CAS  Google Scholar 

  20. Díaz-Díez MÁ, Macías-García A, Silvero G, Gordillo R, Caruso R (2003) Ceram Int 29:471. doi:10.1016/S0272-8842(02)00189-X

    Article  CAS  Google Scholar 

  21. Venz PA, Frost RL, Kloprogge JT (2000) J Non-Cryst Solids 276:95. doi:10.1016/S0022-3093(00)00267-2

    Article  ADS  CAS  Google Scholar 

  22. Wang P, Wang D, Xie T, Li H, Yang M, Wei X (2008) Mater Chem Phys 109:181. doi:10.1016/j.matchemphys.2007.11.019

    Article  CAS  Google Scholar 

  23. He D, Lin F (2007) Mater Lett 61:3385. doi:10.1016/j.matlet.2006.11.075

    Article  CAS  Google Scholar 

  24. Hari-Bala, Guo Y, Zhao X, Zhao J, Fu W, Ding X, Jiang Y, Yu K, Lv X, Wang Z (2006) Mater Lett 60:494. doi:10.1016/j.matlet.2005.09.030

    Article  CAS  Google Scholar 

  25. Liu AR, Wang SM, Zhao YR, Zheng Z (2006) Mater Chem Phys 99:131. doi:10.1016/j.matchemphys.2005.10.003

    Article  CAS  Google Scholar 

  26. Sugimoto T, Zhou X, Muramatsu A (2003) J Colloid Interface Sci 259:43. doi:10.1016/S0021-9797(03)00036-5

    Article  PubMed  CAS  Google Scholar 

  27. Ohsaka T, Izumi F, Fujiki Y (1978) J Raman Spectrosc 7:321. doi:10.1002/jrs.1250070606

    Article  ADS  Google Scholar 

  28. Šćepanović MJ, Grujić-Brojčin MU, Dohčević-Mitrović ZD, Popović ZV (2006) Mater Sci Forum 518:101

    Article  Google Scholar 

  29. Šćepanović MJ, Grujić-Brojčin M, Dohčević-Mitrović Z, Popović ZV (2007) Appl Phys A 86:365. doi:10.1007/s00339-006-3775-x

    Article  CAS  Google Scholar 

  30. Li Bassi A, Cattaneo D, Russo V, Bottani CE, Barborini E, Mazza T, Piseri P, Milani P, Emst FO, Wegner K, Pratsinis SE (2005) J Appl Phys 98:074305. doi:10.1063/1.2061894

    Article  ADS  CAS  Google Scholar 

  31. Kelly S, Pollak FH, Tomkiewicz M (1997) J Phys Chem B 101:2730. doi:10.1021/jp962747a

    Article  CAS  Google Scholar 

  32. Bersani D, Lottici PP (1998) Appl Phys Lett 72:73. doi:10.1063/1.120648

    Article  ADS  CAS  Google Scholar 

  33. Richter H, Wang ZP, Ley L (1981) Solid State Commun 39:625. doi:10.1016/0038-1098(81)90337-9

    Article  ADS  CAS  Google Scholar 

  34. Campbell IH, Fauchet PM (1984) Solid State Commun 58:739. doi:10.1016/0038-1098(86)90513-2

    Article  ADS  Google Scholar 

  35. Spanier JE, Robinson RD, Zhang F, Chan SW, Herman IP (2001) Phys Rev B 64:245407. doi:10.1103/PhysRevB.64.245407

    Article  ADS  CAS  Google Scholar 

  36. Parker JC, Siegel RW (1990) Appl Phys Lett 57:943. doi:10.1063/1.104274

    Article  ADS  CAS  Google Scholar 

  37. Zhu KR, Zhang MS, Chen Q, Yin Z (2005) Phys Lett A 340:220. doi:10.1016/j.physleta.2005.04.008

    Article  ADS  CAS  Google Scholar 

  38. Mikami M, Nakamura S, Kitao O, Arakawa H (2002) Phys Rev B 66:155213. doi:10.1103/PhysRevB.66.155213

    Article  ADS  CAS  Google Scholar 

  39. Ivanda M, Tonejc AM, Djerdj I, Gotić M, Musić S, Mariotto G, Montagna M (2002) Nanoscale spectroscopy and its applications in semiconductor research, Lecture Notes in Physics, vol 588. Springer, Berlin, p 24

  40. Djaoued Y, Brüning R, Bersani D, Lottici PP, Badilescu S (2004) Mater Lett 58:2618. doi:10.1016/j.matlet.2004.03.034

    Article  CAS  Google Scholar 

  41. Yin S, Ihara K, Liu B, Wang Y, Li R, Sato T (2007) Phys Scr T 129:268. doi:10.1088/0031-8949/2007/T129/060

    Article  ADS  CAS  Google Scholar 

  42. Bersani D, Lottici PP, Lopez T, Ding X-Z (1998) J Sol-Gel Sci Technol 13:849. doi:10.1023/A:1008602718987

    Article  CAS  Google Scholar 

  43. Ovenstone J, Yanagisawa K (1999) Chem Mater 11:2770. doi:10.1021/cm990172z

    Article  CAS  Google Scholar 

  44. Deshpande SB, Potdar HS, Khollam YB, Patil KR, Pasricha R, Jacob NE (2006) Mater Chem Phys 97:207. doi:10.1016/j.matchemphys.2005.02.014

    Article  CAS  Google Scholar 

  45. Khanna PK, Singh N, Charan S (2007) Mater Lett 61:4725. doi:10.1016/j.matlet.2007.03.064

    Article  CAS  Google Scholar 

  46. Khan R, Woo Kim S, Kim T-J, Nam C-M (2008) Mater Chem Phys 112:167

    Google Scholar 

  47. Pottier A, Chanéac C, Tronc E, Mazerolles L, Jolivet J-P (2001) J Mater Chem 11:116. doi:10.1039/b100435m

    Article  Google Scholar 

Download references

Acknowledgement

Authors express thanks to Mirjana Grujić-Brojčin for the original software solutions which enabled the application of the PCM for numerical simulation of Raman spectra of investigated samples. Authors are also grateful to Toma Radić and Marko Radović for their help during AFM measurements. This work is supported by the Serbian Ministry of Science under project no. 141047, the OPSA-026283 project within the AC FP6 programme and SASA project F-134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Golubović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubović, A., Šćepanović, M., Kremenović, A. et al. Raman study of the variation in anatase structure of TiO2 nanopowders due to the changes of sol–gel synthesis conditions. J Sol-Gel Sci Technol 49, 311–319 (2009). https://doi.org/10.1007/s10971-008-1872-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1872-3

Keywords

Navigation