Skip to main content
Log in

The utility of sulfonic acid catalysts for silane water-crosslinked network formation in the ethylene–propylene copolymer system

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Catalytic effects of Brönsted acid on the early kinetics of water-crosslinking reaction in the vinyltrimethoxysilane-grafted ethylene–propylene copolymer (EPR-g-VTMS) system were investigated by means of an attenuated total reflectance-Fourier transform infrared (ATR-FTIR) technique and gel fraction measurements. Four sulfonic acids with different substituent, including methanesulfonic acid (C1SO3H), 1-propanesulfonic acid (C3SO3H), 1-pentanesulfonic acid (C5SO3H), and dodecylbenzenesulfonic acid (C12PhSO3H), were selected to examine the progress and effect of progressive changes in the silane water-crosslinked network structure in comparison with a primary amine (n-octadecylamine, Lewis base). From the kinetic analysis using Arrhenius equation, we found that the frequency factors for both hydrolysis (ATR-FTIR) and condensation step (gel content) of EPR-g-VTMS decreased in the order of C1SO3H > C3SO3H > C5SO3H > C12PhSO3H, while the activation energy values for each reaction did not differ significantly. These relationships can be explained mainly on the basis of the diffusion factors of the sulfonic acids in EPR-g-VTMS system. Moreover, the stress–strain curve comparison between water-crosslinked EPR-g-VTMS samples containing sulfonic acid and amine compound clearly indicated the difference in their tensile properties as a result of the catalyst variation; the use of sulfonic acid as water-crosslinking catalyst eventually achieves to the soft and tough water-crosslinked EPR-g-VTMS, while the hard and strong one was produced using amine catalyst. Not only the catalytic activity but also the type of the catalyst has eventually significant effects upon the physical properties of the water-crosslinked EPR-g-VTMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Seymour RB, Cheng TC (eds) (1988) Advances in polyolefins: The world’s most widely used polymers, 1st edn. Springer-Verlag, NY, USA

    Google Scholar 

  2. Vasile C (ed) (2000) Handbook of polyolefins, 2nd edn. CRC Press, FL, USA

    Google Scholar 

  3. Nwabunma D, Kyu T (eds) (2007) Polyolefin blends. Wiley–Interscience, NJ, USA

    Google Scholar 

  4. Smedberg A, Hjertberg T, Gustafsson B (2003) Polymer (Guildf) 44:3395–3405. doi:10.1016/S0032-3861(03)00179-4

    Article  CAS  Google Scholar 

  5. Gheysari D, Behjat A (2001) Eur Polym J 37:2011–2016. doi:10.1016/S0014-3057(01)00084-2

    Article  CAS  Google Scholar 

  6. Wang Z, Hu Y, Gui Z, Zong R (2003) Polym Test 22:533–538. doi:10.1016/S0142-9418(02)00149-6

    Article  CAS  Google Scholar 

  7. Wright JD, Sommerdijk NAJM (2000) Sol–gel materials: chemistry and applications. CRC Press, Florida, USA

    Google Scholar 

  8. Hench LL, West JK (1990) Chem Rev 90:33–72. doi:10.1021/cr00099a003

    Article  CAS  Google Scholar 

  9. Al-Malaika S (ed) (1997) Reactive modifiers for polymers. Blackie Academic and Professional, London, UK

    Google Scholar 

  10. Plueademann EP (2003) Silane coupling agents. Springer, Heidelberg

    Google Scholar 

  11. Sultan BA, Palmlöf M (1994) Plast Rubber Comp Process Appl 21:65–73

    CAS  Google Scholar 

  12. van der Weij FW (1980) Makromol Chem 181:2541–2548. doi:10.1002/macp.1980.021811211

    Article  Google Scholar 

  13. Toynbee J (1994) Polymer (Guildf) 35:438–440. doi:10.1016/0032-3861(94)90717-X

    Article  CAS  Google Scholar 

  14. Shieh Y-T, Chuang H-C, Liu C-M (2001) J Appl Polym Sci 81:1799–1807. doi:10.1002/app.1613

    Article  CAS  Google Scholar 

  15. Fent K (1996) Crit Rev Toxicol 26:1–117. doi:10.3109/10408449609089891

    Article  PubMed  CAS  Google Scholar 

  16. Cledón M, Theobald N, Gerwinski W, Penchaszadeh PE (2006) J Mar Biol Assoc UK 86:751–754. doi:10.1017/S002531540601366X

    Article  Google Scholar 

  17. Doering DD, Steckelbroeck S, Doering T, Klingmüller D (2002) Steroids 67:859–887. doi:10.1016/S0039-128X(02)00051-X

    Article  PubMed  CAS  Google Scholar 

  18. Adachi K, Hirano T (2008) Eur Polym J 44:542–549. doi:10.1016/j.eurpolymj.2007.11.033

    Article  CAS  Google Scholar 

  19. Adachi K, Hirano T (2008) Ind Eng Chem Res 47:1812–1819. doi:10.1021/ie0708069

    Article  CAS  Google Scholar 

  20. van Alsten JG (1995) Trends Polym Sci (Regul Ed) 3:272–276

    Google Scholar 

  21. Smith WF (2004) Foundations of materials science and engineering, 3rd edn. McGraw-Hill, NY, USA

    Google Scholar 

  22. Crank J (1956) The mathematics of diffusion. Oxford University Press, Oxford, UK

    MATH  Google Scholar 

  23. Adachi K, Hirano T, Fukuda K, Nakamae K (2007) Macromol React Eng 1:313–320. doi:10.1002/mren.200600044

    Article  CAS  Google Scholar 

  24. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. John Wiley & Sons, New York, USA

    Google Scholar 

  25. Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds, 5th edn. John Wiley & Sons, New York, USA

    Google Scholar 

  26. Sirisinha K, Kawko K (2005) Macromol Mater Eng 290:128–135. doi:10.1002/mame.200400254

    Article  CAS  Google Scholar 

  27. Sirisinha K, Chimdist S (2006) Polym Test 25:518–526. doi:10.1016/j.polymertesting.2006.01.015

    Article  CAS  Google Scholar 

  28. Barton AFM (1983) Handbook of solubility parameters and other cohesion parameters. CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  29. Barton AFM (1985) Pure Appl Chem 57:905–912. doi:10.1351/pac198557070905

    Article  CAS  Google Scholar 

  30. ACD-Lab software for calculating the referred physicochemical parameters, www.acdlabs.com

  31. Brandrup J, Immergut EH (eds) (1989) Polymer handbook, 3rd edn. John Wiley & Sons, New York, USA

    Google Scholar 

  32. Hjertberg T, Palmlof M, Sultan B-A (1991) J Appl Polym Sci 42:1185–1192. doi:10.1002/app.1991.070420503

    Article  CAS  Google Scholar 

  33. Gazel A, Lemaire J, Laurenson P, Roche G (1985) Makromol Chem Rapid Commun 6:235–240. doi:10.1002/marc.1985.030060404

    Article  CAS  Google Scholar 

  34. De Gennes PG (1979) Scaling concepts in polymer physics. Oxford University Press, Oxford, UK

    Google Scholar 

  35. Harland RS, Peppas NA (1989) Colloid Polym Sci 267:218–225. doi:10.1007/BF01410578

    Article  CAS  Google Scholar 

  36. Narkis M, Tzur A, Vaxman A, Fritz HG (1985) Polym Eng Sci 25:857–862. doi:10.1002/pen.760251311

    Article  CAS  Google Scholar 

  37. Shieh Y-T, Liau J-S, Chen T-K (2001) J Appl Polym Sci 81:186–196. doi:10.1002/app.1428

    Article  CAS  Google Scholar 

  38. Aelion R, Loebel A, Eirich F (1950) J Am Chem Soc 72:5705–5712. doi:10.1021/ja01168a090

    Article  CAS  Google Scholar 

  39. Grubb WT (1954) J Am Chem Soc 76:3408–3414. doi:10.1021/ja01642a014

    Article  CAS  Google Scholar 

  40. Brinker CJ (1988) J Non-Cryst Solids 100:31–50. doi:10.1016/0022-3093(88)90005-1

    Article  ADS  CAS  Google Scholar 

  41. Brinker CJ, Scherer GW (eds) (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, NY, USA

    Google Scholar 

  42. Carswell TS, Nason HK (1944) Mod Plast 21:121–126

    Google Scholar 

  43. Okumoto S, Fujita N, Yamabe S (1998) J Phys Chem A 102:3991–3998. doi:10.1021/jp980705b

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author (KA) acknowledges Dr. Paul H. Kasai (MORESCO) for their helpful supports and advices and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Adachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi, K., Hirano, T. The utility of sulfonic acid catalysts for silane water-crosslinked network formation in the ethylene–propylene copolymer system. J Sol-Gel Sci Technol 49, 186–195 (2009). https://doi.org/10.1007/s10971-008-1857-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1857-2

Keywords

Navigation