Skip to main content
Log in

Acid character control of bioactive glass/polyvinyl alcohol hybrid foams produced by sol–gel

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Bioactive glass/polymer hybrids are promising materials for biomedical applications because they combine the bioactivity of bioceramics with the flexibility of polymers. In previous work hybrid foams with 80% bioactive glass and 20% polyvinyl alcohol were prepared by the sol–gel method. The produced hybrids presented a high acidic character due to the catalysts added. In this work different methods to control the acidity and toxicity of the hybrids were also evaluated, through changes in the synthesis pH and use of different neutralization solutions. The hybrids were prepared with inorganic phase composition of 70%SiO2–30%CaO and PVA fractions of 20–60% by the sol–gel method. The characterization of the obtained foams was done by FTIR, SEM, Raman Spectroscopy, Helium Picnometry and TGA. The immersion of hybrids in a calcium acetate solution was the most adequate neutralization method. The foams presented porosity of 60–85% and pore diameters of 100–500 μm with interconnected structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hench LL, Polak JM (2002) Science 295:1014

    Article  CAS  Google Scholar 

  2. Langer R, Tirrell DA (2004) Nature 248:487

    Article  CAS  Google Scholar 

  3. Buckley CT, O’Kelly KU (2004) Topics in bio-mechanical engineering. Dublin, Ireland

    Google Scholar 

  4. Mathieu LM et al (2006) Biomaterials 27:905

    Article  CAS  Google Scholar 

  5. Hench LL, Wilson J (1993) An introduction to bioceramics: advanced series in ceramic. World Science, London

    Google Scholar 

  6. Hench LL, Polak JM (2002) Science 295:1014

    Article  CAS  Google Scholar 

  7. Coelho MB, Pereira MM (2005) J Biomed Mater Res B Appl Biomater 75:451

    Google Scholar 

  8. Hokugo A, Takamoto T, Tabata Y (2006) Biomaterials 27:61

    Article  CAS  Google Scholar 

  9. Vasconcelos VL, Pereira APV, Oréfice RL (1999) Polímeros 9:104

    Google Scholar 

  10. Salinas AJ et al (2004) Key Eng Mater 254–256:481

    Google Scholar 

  11. Pereira MM et al (2005) Key Eng Mater 284–286:589

    Article  Google Scholar 

  12. Pereira MM, Jones JR, Hench LL (2005) Adv Appl Ceram 35:104

    Google Scholar 

  13. Anedda A, Carbonaro C, Clemente F et al (2003) Mater Sci Eng C 23:1069

    Article  CAS  Google Scholar 

  14. Atamas NA, Yaremko AM, Bulavin LA et al (2002) J Molec Struct 1605:187

    Article  Google Scholar 

  15. Balamurugan A, Sockalingum G, Michel J et al (2006) Mater Lett 60:3752

    Article  CAS  Google Scholar 

  16. Björnström J, Martinelli A, Johnson J et al (2003) Chem Phys Lett 380:165

    Article  CAS  Google Scholar 

  17. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press Inc, London

    Google Scholar 

  18. Chah K, Boizot B, Reynard B et al (2002) Nucl Instr Meth Phys Res 191:337

    Article  CAS  Google Scholar 

  19. Chen Q, Miyaji F, Kokubo T et al (1999) Biomater 20:1127

    Article  CAS  Google Scholar 

  20. (a) Chiodini N, Meirardi F, Morazzoni F et al (1999) Solid State Comm 109:145; (b) Duverger C, Newdelec J, Benatsou M et al (1999) J Molec Struct 480–448:169

  21. Gnado J, Dhamelincourt P, Pélégris C et al (1996) J Non-Cryst Solids 208:247

    Article  CAS  Google Scholar 

  22. González P, Serra J, Liste S et al (2003) J Non-Cryst Solids 320:92

    Article  CAS  Google Scholar 

  23. Handke M, Sitarz M, Rokita M et al (2003) J Molec Struct 651–653:39

    Article  CAS  Google Scholar 

  24. Innocenzi P (2003) J Non-Cryst Solids 316:309

    Article  CAS  Google Scholar 

  25. Kamitsos E, Patsis A, Kordas G (1993) Phys Rev B 48:12499

    Article  CAS  Google Scholar 

  26. Kepinski L, Maczka M, Drozd M (2006) J Alloys Compd 444:132

    Google Scholar 

  27. Kinowski C, Bouazaoui M, Bechara R et al (2001) J Non-cryst Solids 291:143

    Article  CAS  Google Scholar 

  28. Leblanc RJ, Chu W, Williams CT (2004) J Molec Catal A: Chem 212:277

    Article  CAS  Google Scholar 

  29. Makreski P, Jovanovski G, Gajovic A (2006) Vibrat Spect 40:98

    Article  CAS  Google Scholar 

  30. Marino I, Lottici P, Bersani D et al (2005) J Non-Cryst Solids 351:495

    Article  CAS  Google Scholar 

  31. Mckeown D, Muller I, Gan H et al (2001) J Non-Cryst Solids 288:191

    Article  CAS  Google Scholar 

  32. Mendes LS, Oliveira FC, Suarez PA et al (2003) Anal Chim Acta 493:219

    Article  CAS  Google Scholar 

  33. Nedelec J, Hench L (1999) J Non-Cryst Solids 255:163

    Article  CAS  Google Scholar 

  34. Nedelec J, Hench L (2000) J Non-Cryst Solids 277:106

    Article  CAS  Google Scholar 

  35. Neuville D (2006) Chem Geol 229:28

    Article  CAS  Google Scholar 

  36. Notingher I, Boccaccini A, Jones J et al (2003) Mater Charact 49:255

    Article  CAS  Google Scholar 

  37. Panitz J, Wokaun A (1997) J Sol–Gel Sci Technol 9:251

    Google Scholar 

  38. Pettinari C, Santini C (2000) IR and Raman spectroscopy of inorganic. coordination and organometallic compounds. Academic Press, London

    Google Scholar 

  39. Robbe O, Woznica K, Berrier E et al (2006) Thin Solid Films 515:73

    Article  CAS  Google Scholar 

  40. Robinet L, Coupry C, Eremin K et al (2006) J Raman Spect 37:1278

    Article  CAS  Google Scholar 

  41. Rokita M, Mozgawa W, Handke M (2001) J Molec Struct 596:171

    Article  CAS  Google Scholar 

  42. Ruiz F, Martínez J, Hernández G (2002) J Molec Struct 641:243

    Article  CAS  Google Scholar 

  43. Sassi Z, Bureau J (2002) Vibrat Spect 28:251

    Article  CAS  Google Scholar 

  44. Shimoda K, Miyamoto H, Kikuchi M et al (2005) Chem Geol 222:83

    Article  CAS  Google Scholar 

  45. Smallwood A, Thomas P, Ray A (1997) Spectrochim Acta A 53:2341

    Article  Google Scholar 

  46. Stopar J, Lucey P, Sharma S et al (2005) Spectrochim Acta A 61:2315

    Article  CAS  Google Scholar 

  47. Vandenabeele P, Wehling B, Moens L et al (2000) Anal Chim Acta 407:261

    Article  CAS  Google Scholar 

  48. Yang Y, Li W, Yu L et al (1997) Infrared Phys Technol 38:9

    Article  CAS  Google Scholar 

  49. Yuan P, Wu D, He H et al (2004) Appl Surf Sci 227:30

    Article  CAS  Google Scholar 

  50. Cerruti M, Greenspan D, Powers K (2005) Biomat 26:1665

    Article  CAS  Google Scholar 

  51. Gallardo J, Durán A, Martino D et al (2002) J Non-Cryst Solids 298:219

    Article  CAS  Google Scholar 

  52. He ZW, Liu XQ, Xu DY et al (2006) Phys Scripta 73:384

    Article  CAS  Google Scholar 

  53. Hsiue GH, Kuo WJ, Huang YP et al (2000) Polymers 41:2813

    Article  CAS  Google Scholar 

  54. Keller DE, Visser T, Soulimani F et al (2007) Vibrat Spect 43:140

    Article  CAS  Google Scholar 

  55. Li YS, Vecchio NE, Wang Y et al (2007) Spectrochim Acta A 67:598

    Article  CAS  Google Scholar 

  56. Mansur HS, Oréfice RL, Mansur AAP (2004) Polymer 45:7193

    Article  CAS  Google Scholar 

  57. Mondrágon MA, Castaño VM, Garcia M et al (1995) Vibrat Spect 9:293

    Article  Google Scholar 

  58. Nayar S, Sinhá A (2004) Colloids Surface B Biointerfaces 35:29

    Article  CAS  Google Scholar 

  59. Oki A, Qiu X, Alawode O et al (2006) Mater Lett 60:21

    Article  CAS  Google Scholar 

  60. Oubaha M, Smaïhi M, Etienne P et al (2003) J Non-Cryst Solids 318:305

    Article  CAS  Google Scholar 

  61. Peitl O, Oréfice RL, Hench LL et al (2004) Mater Sci Eng A 372:245

    Article  CAS  Google Scholar 

  62. Pereira MM, Orefice RL, Mansur HS et al (2003) Mat Res 6:311

    Article  CAS  Google Scholar 

  63. Rokita M, Mozgawa W, Handke M (2001) J Molec Struct 596:171

    Article  CAS  Google Scholar 

  64. Roma G, Limoge Y, Martin-Samos L (2006) Nuclear Instr Meth Phys Res B 250:54

    Article  CAS  Google Scholar 

  65. Shao C, Kim H, Gong J et al (2002) Nanotechonol 13:635

    Article  CAS  Google Scholar 

  66. Sitarz M, Handke M, Mozgawa W (2000) Spectrochim Acta A 56:1819

    Article  Google Scholar 

  67. Xu Y, Li Z, Fan W et al (2004) Appl Surface Sci 225:116

    Article  CAS  Google Scholar 

  68. Yan H, Zhang K, Blanford CF et al (2001) Chem Mater 13:1374

    Article  CAS  Google Scholar 

  69. Araújo EB (1998) Rev Bras Ens Fís 20:359

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge National Counsel of Technological and Scientific Development, The State of Minas Gerais Research Foundation and CAPES for financial support on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. R. de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, A.A.R., Ciminelli, V., Dantas, M.S.S. et al. Acid character control of bioactive glass/polyvinyl alcohol hybrid foams produced by sol–gel. J Sol-Gel Sci Technol 47, 335–346 (2008). https://doi.org/10.1007/s10971-008-1777-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1777-1

Keywords

Navigation