Skip to main content
Log in

Bioglass® and resulting crystalline materials synthesized via an acetic acid-assisted sol–gel route

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, we report on the synthesis of a bioactive glass powder with the original 45S5 composition (Bioglass®) by means of an acetic acid-assisted sol–gel route. A glassy material was obtained after the gels underwent a thermal stabilization treatment at 600 °C for 3 h. Above this temperature, the heat-treated gels crystallized partially, forming a sodium-calcium-silicate Na2CaSi2O6 phase. Even after crystallization, this material showed in vitro bioactivity in simulated body fluid after 12 h, when the formation of hydroxycarbonate apatite on the material surface was identified by X-ray diffraction. Not surprisingly, microbiological assays revealed that these gel-derived materials appear to have an antibacterial effect against Pseudomonas aeruginosa (ATCC 27853)—a Gram-negative bacterium that is noted for its environmental survival versatility, ability to produce biofilm and resistance to some antibiotics. Thus, using common precursors that are widely available, relatively cheap, simple to use, and which result in gels with low stabilization temperature, it was possible to explore the versatility of sol–gel processing to obtain the golden standard 45S5 bioglass.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486

    Article  Google Scholar 

  2. Miguez-Pacheco V, Hench LL, Boccaccini AR (2015) Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater 13:1–15

    Article  Google Scholar 

  3. Hench LL (2006) The story of Bioglass®. J Mater Sci Mater Med 17:967–978

    Article  Google Scholar 

  4. Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol–gel processing. J App Biomater 2:231–239

    Article  Google Scholar 

  5. Hench LL (1998) Biomaterials: a forecast for the future. Biomaterials 19:1419–1423

    Article  Google Scholar 

  6. Jones JR, Ehrenfried LM, Hench LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27:964–973

    Article  Google Scholar 

  7. Jones JR (2009) New trends in bioactive scaffolds: the importance of nanostructure. J Eur Ceram Soc 29:1275–1281

    Article  Google Scholar 

  8. Peitl O, Zanotto ED, Hench LL (2001) Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. J Non-Cryst Solids 292:115–126

    Article  Google Scholar 

  9. Siqueira RL, Peitl O, Zanotto ED (2011) Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: synthesis and in vitro bioactivity. Mater Sci Eng C 31:983–991

    Article  Google Scholar 

  10. Chen Q-Z, Li Y, Jin L-Y, Quinn JMW, Komesaroff PA (2010) A new sol–gel process for producing Na2O-containing bioactive glass ceramics. Acta Biomater 6:4143–4153

    Article  Google Scholar 

  11. Chen Q-Z, Thouas GA (2011) Fabrication and characterization of sol–gel derived 45S5 Bioglass®-ceramic scaffolds. Acta Biomater 7:3616–3626

    Article  Google Scholar 

  12. Bahniuk MS, Pirayesh H, Singh HD, Nychka JA, Unsworth LD (2012) Bioactive glass 45S5 powders: effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plasma. Biointerphases 7:1–15

    Article  Google Scholar 

  13. Pirayesh H, Nychka JA (2013) Sol-gel synthesis of bioactive glass-ceramic 45S5 and its in vitro dissolution and mineralization behavior. J Am Ceram Soc 96:1643–1650

    Article  Google Scholar 

  14. Li HC, Wang DG, Hu JH, Chen CZ (2013) Crystallization, mechanical properties and in vitro bioactivity of sol–gel derived Na2O–CaO–SiO2–P2O5 glass-ceramics by partial substitution of CaF2 for CaO. J Sol Gel Sci Technol 67:56–65

    Article  Google Scholar 

  15. Zheng K, Solodovnyk A, Li W, Goudouri O-M, Stähli C, Nazhat SN, Boccaccini AR (2015) Aging time and temperature effects on the structure and bioactivity of gel-derived 45S5 glass-ceramics. J Am Ceram Soc 98:30–38

    Article  Google Scholar 

  16. Faure J, Drevet R, Lemelle A, Jaber NB, Tara A, Btaouri HE, Benhayoune H (2015) A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Mater Sci Eng C 47:407–412

    Article  Google Scholar 

  17. Thomas A, Bera J (2016) Sol–gel synthesis and in vitro bioactivity of glass-ceramics in SiO2–CaO–Na2O–P2O5 system. J Sol Gel Sci Technol 80:411–416

    Article  Google Scholar 

  18. Siqueira RL, Zanotto ED (2013) The influence of phosphorus precursors on the synthesis and bioactivity of SiO2–CaO–P2O5 sol–gel glasses and glass-ceramics. J Mater Sci Mater Med 24:365–379

    Article  Google Scholar 

  19. Shah AT, Ain Q, Chaudhry AA, Khan AF, Iqbal B, Ahmad S, Siddiqi SA, ur Rehman I (2015) A study of the effect of precursors on physical and biological properties of mesoporous bioactive glass. J Mater Sci 50:1794–1804

    Article  Google Scholar 

  20. Cacciotti I, Lombardi M, Bianco A, Ravaglioli A, Montanaro L (2012) Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour. J Mater Sci Mater Med 23:1849–1866

    Article  Google Scholar 

  21. Shankhwar N, Kothiyal GP, Srinivasan A (2015) Influence of phosphate precursors on the structure, crystallization behaviour and bioactivity of sol–gel derived 45S5 bioglass. RSC Adv 5:100762–100768

    Article  Google Scholar 

  22. Catteaux R, Grattepanche-Lebecq I, Désanglois F, Chai F, Hornez J-C, Hampshire S, Follet-Houttemane C (2013) Synthesis, characterization and bioactivity of bioglasses in the Na2O–CaO–P2O5–SiO2 system prepared via sol gel processing. Chem Eng Res Des 91:2420–2426

    Article  Google Scholar 

  23. Rezabeigi E, Wood-Adams PM, Drew RAL (2014) Synthesis of 45S5 Bioglass® via a straightforward organic, nitrate-free sol–gel process. Mater Sci Eng C 40:248–252

    Article  Google Scholar 

  24. Siqueira RL, Alano JH, Peitl O, Zanotto ED (2017) GlassPanacea: a user-friendly free software tool for the formulation of glasses, glass-ceramics, and ceramics. Am Ceram Soc Bull 96:48–49

    Google Scholar 

  25. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  26. Maçon ALB, Kim TB, Valliant EM, Goetschius K, Brow RK, Day DE, Hoppe A, Boccaccini AR, Kim IY, Ohtsuki C, Kokubo T, Osaka A, Vallet-Regí M, Arcos D, Fraile L, Salinas AJ, Teixeira AV, Vueva Y, Almeida RM, Miola M, Vitale-Brovarone C, Verné E, Höland W, Jones JR (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:115–125

    Article  Google Scholar 

  27. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  Google Scholar 

  28. Arenas LT, Simm CW, Gushikem Y, Dias SLP, Moro CC, Costa TMH, Benvenutti EV (2007) Synthesis of silica xerogels with high surface area using acetic acid as catalyst. J Braz Chem Soc 18:886–890

    Article  Google Scholar 

  29. Aguiar H, Serra J, González P, León B (2009) Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J Non-Cryst Solids 355:475–480

    Article  Google Scholar 

  30. Lucas-Girot A, Mezahi FZ, Mami M, Oudadesse H, Harabi A, Floch ML (2011) Sol–gel synthesis of a new composition of bioactive glass in the quaternary system SiO2–CaO–Na2O–P2O5: comparison with melting method. J Non-Cryst Solids 357:3322–3327

    Article  Google Scholar 

  31. Cerruti M, Morterra C (2004) Carbonate formation on bioactive glasses. Langmuir 20:6382–6388

    Article  Google Scholar 

  32. Perardi A, Cerrruti M, Morterra C (2005) Carbonate formation on sol–gel bioactive glass 58S and on Bioglass® 45S5. Stud Surf Sci Catal 155:461–469

    Article  Google Scholar 

  33. Langille KB, Nguyen D, Bernt JO, Veinot DE, Murthy MK (1993) Constitution and properties of phosphosilicate coatings. Part I: influence of sodium phosphates on the constitution of sodium silicate coatings. J Mater Sci 28:4175–4182

    Article  Google Scholar 

  34. Khawaja EE, Durrani SMA, Al-Adel FF, Salim MA, Hussain MS (1995) X-ray photoelectron spectroscopy and Fourier transform-infrared studies of transition metal phosphate glasses. J Mater Sci 30:225–234

    Article  Google Scholar 

  35. Lefebvre L, Chevalier J, Gremillard L, Zenati R, Thollet G, Bernache-Assolant D, Govin A (2007) Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Mater 55:3305–3313

    Article  Google Scholar 

  36. BAE Ben-Arfa, IMM Salvado, JMF Ferreira, RC Pullar (2016) A hundred times faster: novel, rapid sol–gel synthesis of bioglass nanopowders (Si–Na–Ca–P system, Ca:P = 1.67) without aging. Int. J Appl Glass Sci doi:10.1111/ijag.12255.1-7

  37. Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass. J Mater Chem 19:1276–1282

    Article  Google Scholar 

  38. Lei B, Chen X, Wang Y, Zhao N, Du C, Zhang L (2019) Acetic acid derived mesoporous bioactive glasses with an enhanced in vitro bioactivity. J Non-Cryst Solids 355:2583–2587

    Article  Google Scholar 

  39. Šupová M (2015) Substituted hydroxyapatites for biomedical applications: a review. Ceram Int 41:9203–9231

    Article  Google Scholar 

  40. Rehman I, Hench LL, Bonfield W, Smith R (1994) Analysis of surface layers on bioactive glasses. Biomaterials 15:865–870

    Article  Google Scholar 

  41. Streeter K, Katouli M (2016) Pseudomonas aeruginosa: a review of their pathogenesis and prevalence in clinical settings and the environment. Infect. Epidemiol Med 2:25–32

    Google Scholar 

  42. Clinical and Laboratory Standards Institute (CLSI) (2012) Performance standards for antimicrobial disk susceptibility tests. Approved standard M02-A11. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  43. Munukka E, Leppäranta O, Korkeamäki M, Vaahtio M, Peltola T, Zhang D, Hupa L, Ylänen H, Salonen JI, Viljanen MK, Eerola E (2008) Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med 19:27–32

    Article  Google Scholar 

  44. Hu S, Chang J, Liu M, Ning C (2009) Study on antibacterial effect of 45S5 Bioglass®. J Mater Sci Mater Med 20:281–286

    Article  Google Scholar 

  45. Zhang D, Leppäranta O, Munukka E, Ylänen HMK, Eerola E, Hupa M, Hupa L (2010) Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res A 93:475–483

    Google Scholar 

Download references

Acknowledgements

We are grateful to the following Brazilian research funding agencies: FAPESP—São Paulo Research Foundation (CEPID—project no. 2013/07793-6) for its generous funding, and CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico (Project no. 140516/2013-1) for granting a scholarship to R. L. Siqueira.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato L. Siqueira.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqueira, R.L., Costa, L.C., Schiavon, M.A. et al. Bioglass® and resulting crystalline materials synthesized via an acetic acid-assisted sol–gel route. J Sol-Gel Sci Technol 83, 165–173 (2017). https://doi.org/10.1007/s10971-017-4402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4402-3

Keywords

Navigation