Skip to main content
Log in

Sol–gel processing of IrO2–TiO2 mixed metal oxides based on an iridium acetate precursor

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mixed IrO2–TiO2 oxides were prepared by the sol–gel method by adding an aqueous solution of an iridium(III) acetate precursor [Ir3O(OAc)6 (HOAc)3]OAc, to titanium tetraethoxide in ethanol. By using an acetylacetonate modifier to stabilize the hydrolysed titanium alkoxide and by omitting a catalyst, gels were produced in all cases. Transmission electron microscopy and EDX analysis confirmed the high dispersion of iridium in the dried gel material on the nanometre scale. The images also show spherical cage features up to 20 nm in diameter. High mass losses of the gels in the TGA scans suggested low degrees of hydrolysis of the acetate precursor, but calcination gave a crystalline, mixed oxide (TixIr1–xO2) solid solution. The precursor is also soluble in ethanol, which provides a slightly modified route to similar materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li BS, Lin A, Gan FX (2006) Trans Non-ferrous Metals Soc China 16:1193

    Article  CAS  Google Scholar 

  2. Hu JM, Zhang JQ, Cao CN (2004) Int J Hydrogen Energy 29:791

    Article  CAS  Google Scholar 

  3. Santana MHP, De Faria LA, Boodts JFC (2004) Electrochim Acta 49:1925

    Article  CAS  Google Scholar 

  4. Hu JM, Meng HM, Zhang JQ, Wu JX, Yang DJ, Ca CN (2001) Acta Metallurgica Sin 37:628

    CAS  Google Scholar 

  5. Alves VA, da Silva LA, Boodts JFC (2000) Polish J Chem 74:421

    CAS  Google Scholar 

  6. Alves VA, da Silva LA, Boodts JFC (1998) Electrochim Acta 44:1525

    Article  CAS  Google Scholar 

  7. DaSilva LA, Alves VA, daSilva MAP, Trasatti S, Boodts JFC (1997) Electrochim Acta 42:271

    Article  CAS  Google Scholar 

  8. Alves VA, Dasilva LA, Boodts JFC, Trasatti S (1994) Electrochim Acta 39:1585

    Article  CAS  Google Scholar 

  9. Matsumoto Y, Tazawa T, Muroi N, Sato EI (1986) J Electrochem Soc 133:2257

    Article  CAS  Google Scholar 

  10. Kotz R, Stucki S (1986) Electrochim Acta 31:1311

    Article  Google Scholar 

  11. Jung YW, Lee J, Tak Y (2004) Electrochem Solid State Lett 7:H5

    Article  CAS  Google Scholar 

  12. Taunier S, Guery C, Tarascon JM (1999) Electrochim Acta 44:3219

    Article  CAS  Google Scholar 

  13. Rauh RD, Cogan SF (1993) J Electrochem Soc 140:378

    Article  CAS  Google Scholar 

  14. Cogan SF, Plante TD, McFadden RS, Rauh RD (1987) Solar Energy Mater 16:371

    Article  CAS  Google Scholar 

  15. Patil PS, Kawar RK, Sadale SB (2005) Electrochim Acta 50:2527

    Article  CAS  Google Scholar 

  16. Yano J, Noguchi K, Yamasaki S, Yamazaki S (2004) Electrochem Commun 6:110

    Article  CAS  Google Scholar 

  17. Gomathi H, Jayalakshmi M, Joseph J, Vittal R (2003) Bull Electrochem 19:9

    CAS  Google Scholar 

  18. Mo YB, Stefan IC, Cai WB, Dong J, Carey P, Scherson DA (2002) J Phys Chem B 106:3681

    Article  CAS  Google Scholar 

  19. Music S, Popovic S, Maljkovic M, Skoko Z, Furic K, Gajovic A (2003) Mater Lett 57:4509

    Article  CAS  Google Scholar 

  20. Kristof J, Liszi J, Szabo P, Barbieri A, Debattisti A (1993) J Appl Electrochem 23:615

    Article  CAS  Google Scholar 

  21. Marshall A, Borresen B, Hagen G, Tsypkin M, Tunold R (2005) Mater Chem Phys 94:226

    Article  CAS  Google Scholar 

  22. Afzaal M, Crouch DJ, O’Brien P, Raftery J, Skabara PJ, White AJP, Williams DJ (2004) J Mater Chem 14:233

    Article  CAS  Google Scholar 

  23. Chen RS, Korotcov A, Huang YS, Tsai DS (2006) Nanotechnology 17:R67

    Article  CAS  Google Scholar 

  24. Chen RS, Huang YS, Liang YM, Tsai DS, Chi Y, Kai JJ (2003) J Mater Chem 13:2525

    Article  CAS  Google Scholar 

  25. Xia MX, Wang CB, Gong YS, Shen Q, Zhang LM (2006) Rare Metal Mater Eng 35:820

    CAS  Google Scholar 

  26. Serventi AM, El Khakani MA, Saint-Jacques RG, Rickerby DG (2001) J Mater Res 16:2336

    Article  CAS  Google Scholar 

  27. El Khakani MA, Chaker M (1998) Thin Solid Films 335:6

    Article  CAS  Google Scholar 

  28. ElKhakani MA, Chaker M, Gat E (1996) Appl Phys Lett 69:2027

    Article  Google Scholar 

  29. Wang SJ, Ding AL, Qiu PS, He XY, Luo WG (2000) J Inorg Mater 15:733

    CAS  Google Scholar 

  30. Korotcov AV, Huang YS, Tsai DS, Tiong KK (2006) Thin Solid Films 503:96

    Article  CAS  Google Scholar 

  31. Korotcov AV, Huang YS, Tsai DS, Tiong KK (2006) Solid State Commun 137:310

    Article  CAS  Google Scholar 

  32. Korotcov A, Huang YS, Tsai DS, Tiong KK (2006) J Phys Condens Matter 18:1121

    Article  CAS  Google Scholar 

  33. Patil PS, Kawar RK, Sadale SB (2005) Appl Surf Sci 249:367

    Article  CAS  Google Scholar 

  34. Patil PS, Chigare PS, Sadale SB, Seth T, Amalnerkar DP, Kawar RK (2003) Mater Chem Phys 80:667

    Article  CAS  Google Scholar 

  35. Kawar RK, Chigare PS, Patil PS (2003) Appl Surf Sci 206:90

    Article  CAS  Google Scholar 

  36. de Oliveira-Sousa A, da Silva MAS, Machado SAS, Avaca LA, de Lima-Neto P (2000) Electrochim Acta 45:4467

    Article  Google Scholar 

  37. Brinker CJ, Scherer GW (1990) Sol–gel science, the physics and chemistry of the sol–gel process. Academic Press, San Diego, USA

    Google Scholar 

  38. Crayston JA (2003) In: Lever ABP (ed) Comprehensive coordination chemistry II, vol 1, Elsevier, Oxford, p 775

  39. Lee GR, Crayston JA (1993) Adv Mater 5:434

    Article  CAS  Google Scholar 

  40. Kessler VG, Spijksma GI, Seisenbaeva GA, Hakansson S, Blank DHA, Bouwmeester HJM (2006) J Sol-Gel Sci Technol 40:163

    Article  CAS  Google Scholar 

  41. Lee GR, Crayston JA (1994) J Mater Chem 4:1093

    Article  CAS  Google Scholar 

  42. Osman JR (1998) PhD Thesis, University of St Andrews

  43. Osaka A, Takatsuna T, Miura Y (1994) J Non-Crystalline Solids 178:313

    Article  CAS  Google Scholar 

  44. Birss VI, Andreas H, Serebrennikova I, Elzanowska H (1999) Electrochem Solid State Lett 2:326

    Article  CAS  Google Scholar 

  45. Andreas H, Elzanowska H, Serebrennikova I, Birss V (2000) J Electrochem Soc 147:4598

    Article  CAS  Google Scholar 

  46. Castilloblum SE, Richens DT, Sykes AG (1989) Inorg Chem 28:954

    Article  CAS  Google Scholar 

  47. Bestaoui N, Prouzet E (1997) Chem Mat 9:1036

    Article  CAS  Google Scholar 

  48. Murakami Y, Tsuchiya S, Yahikozawa K, Takasu Y (1994) J Mater Sci Lett 13:1773

    Article  CAS  Google Scholar 

  49. Murakami Y, Ohkawauchi H, Ito M, Yahikozawa K, Takasu Y (1994) Electrochim Acta 39:2551

    Article  CAS  Google Scholar 

  50. Murakami Y, Tsuchiya S, Yahikozawa K, Takasu Y (1994) Electrochim Acta 39:651

    Article  CAS  Google Scholar 

  51. Xu LK, Scantlebury JD (2003) J Electrochem Soc 150:B254

    Article  CAS  Google Scholar 

  52. Xu LK, Scantlebury JD (2003) J Electrochem Soc 150:B288

    Article  CAS  Google Scholar 

  53. Murakami Y, Miwa K, Ueno M, Ito M, Yahikozawa K, Takasu Y (1994) J Electrochem Soc 141:L118

    Article  CAS  Google Scholar 

  54. Takasu Y, Onoue S, Kameyama K, Murakami Y, Yahikozawa K (1994) Electrochim Acta 39:1993

    Article  CAS  Google Scholar 

  55. Osman JR, Crayston JA, Pratt A, Richens DT (2007) J Sol-Gel Sci Technol 44:219

    Article  CAS  Google Scholar 

  56. Almog O, Bino A, Garfinkelshweky D (1993) Inorg Chim Acta 213:99

    Article  CAS  Google Scholar 

  57. Steunou N, Ribot F, Boubekeur K, Maquet J, Sanchez C (1999) New J Chem 23:1079

    Article  CAS  Google Scholar 

  58. Munozaguado MJ, Gregorkiewitz M, Larbot A (1992) Mater Res Bull 27:87

    Article  CAS  Google Scholar 

  59. Doeuff S, Henry M, Sanchez C (1990) Mater Res Bull 25:1519

    Article  CAS  Google Scholar 

  60. Kristof J, Mink J, Debattisti A, Liszi J (1994) Electrochim Acta 39:1531

    Article  CAS  Google Scholar 

  61. Bestaoui N, Prouzet E, Deniard P, Brec R (1993) Thin Solid Films 235:35

    Article  CAS  Google Scholar 

  62. Roginskaya YE, Morozova OV, Loubnin EN, Popov AV, Ulitina YI, Zhurov VV, Ivanov SA, Trasatti S (1993) J Chem Soc Faraday Trans 89:1707

    Article  CAS  Google Scholar 

  63. Endo K, Katayama Y, Miura T, Kishi T (2002) J Appl Electrochem 32:173

    Article  CAS  Google Scholar 

  64. Roginskaya YE, Morozova OV (1995) Electrochim Acta 40:817

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Johnson Matthey for a CASE award for JRO and generous loans of iridium salts. We also thank the following at Johnson Matthey: Barry Murrer, Ann Keep and David Boyd at JM for helpful discussions; Steve Spratt (SEM/TEM), Tony Busby (XPS) and A. Stubbs (SEM/TEM) helped with the analytical measurements. We also thank the referees for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe A. Crayston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osman, J.R., Crayston, J.A., Pratt, A. et al. Sol–gel processing of IrO2–TiO2 mixed metal oxides based on an iridium acetate precursor. J Sol-Gel Sci Technol 46, 126–132 (2008). https://doi.org/10.1007/s10971-008-1730-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1730-3

Keywords

Navigation