Skip to main content
Log in

Sol–gel polycondensation of tetraethoxysilane in ethanol in presence of vinyl modified guar gum: synthesis of novel nanocompositional adsorbent materials

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Novel nanocomposite adsorbent materials were synthesized by condensation polymerization of TEOS in the presence of saponified guar-graft-poly(acrylonitrile) (SG) as template. The effect of changing the molecular size of SG on the final properties of the composite materials was investigated in this paper. The composites were thermally treated at temperatures ranging from 80 to 1100 °C, to obtain materials of different performance. The chemical, structural and textural characteristics of the composites were determined by FTIR, XRD, TGA-DSC and SEM studies. Their adsorption properties were monitored in terms of Zn (II) binding capacity which could be tailored by changing the template size and sintering temperature. The adsorption capacity of the composite at room temperature was enhanced five times when thermally treated at 900 °C with a maximum adsorption of 3.58 meq/g of the zinc (II). The adsorption could be further optimized to higher values and the materials could be successfully recycled for three consecutive cycles without any significant loss in the adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yano S, Iwata K, Kurita K (1998) Mater Sci Eng C 6:75–90

    Google Scholar 

  2. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, Boston, NY

    Google Scholar 

  3. Smith WF (1996) Principles of materials science and engineering. McGraw- Hill, New York

    Google Scholar 

  4. Takahashi R, Sato S, Sodesawa T, Kawakita M, Ogura KJ (2000) Phys Chem B 104:12184–12191

    Article  CAS  Google Scholar 

  5. Molvinger K, Quignard F, Brunel D, Boissiere M, Devoiselle J-M (2004) Chem Mater 16:3367–3372

    Article  CAS  Google Scholar 

  6. Wang G-H, Zhang L-M (2006) J Phys Chem B 110:24864–24868

    Article  CAS  Google Scholar 

  7. Percy MJ, Armes SP (2002) Langmuir 18:4562–4565

    Article  CAS  Google Scholar 

  8. Shuichi M, Michael G, Steven P, Armes I, Fletcher Ian WF (1995) Langmuir 11:1899–1904

    Article  Google Scholar 

  9. Zhou F, Li S, Vo CD, Yuan J-J, Chai S, Gao Q, Armes SP, Lu C, Cheng S (2007) Langmuir 23:9737–9744

    Article  CAS  Google Scholar 

  10. Morton J, Cantwell WJ, Kirk-Othmer (eds) (1997) Encyclopedia of chemical technology, vol. 7, John Wiley & Sons, Boston

  11. Shchipunov Yu A, Tat’yana Yu K (2004) Langmuir 20:3882–3887

    Article  CAS  Google Scholar 

  12. Singh V, Tiwari A, Pandey S, Singh SK, Sanghi R (2007) J Appl Polym Sci 104:536–544

    Article  CAS  Google Scholar 

  13. Shchipunov Yu A, Kojima A, Imae T (2005) J Colloid Interface Sci 285:574–580

    Article  CAS  Google Scholar 

  14. Li F, Li X-M, Zhang S-S (2006) J Chromatogr A 1129:223–230

    Article  CAS  Google Scholar 

  15. Shchipunov Yu A (2003) J Colloid Interface Sci 268:68–76

    Article  CAS  Google Scholar 

  16. Pérez-Quintanilla D, Sánchez A, del Hierro I, Fajardo M, Sierra I (2007) J Colloid Interface Sci 313:551–562

    Google Scholar 

  17. Daas PJH, Schols HA, de Jongh HHJ (2000) Carbohydr Res 329:609–619

    Article  CAS  Google Scholar 

  18. Kato A, Minaki K, Kobayashi K (1993) J Agric Food Chem 41:540–543

    Article  CAS  Google Scholar 

  19. Rama Prasad YV, Krishnaiah YSR, Satyanarayana S (1993) J Controlled Release 51:281–287

    Article  Google Scholar 

  20. Singh V, Tiwari A, Tripathi DN, Sanghi R (2005) Biomacromolecules 6:453–456

    Article  CAS  Google Scholar 

  21. Gutowaska A, Jeong B, Jasionowski M (2001) Anat Rec 263:342–349

    Article  Google Scholar 

  22. Hernandez-Padron G, Rojas F, Castano VM (2004) Nanotechnology 15:98–103

    Article  CAS  Google Scholar 

  23. Masayuki Y (1988). In: Klein LC (ed) Sol–gel technology for films, fibers, performs, electronics and speciality shapes. Noyes Publications, Park Ridge, NJ, p 200

  24. Mendham J, Denney RC, Barnes JD, Thomas MJK, Vogels textbook of quantitative chemical analysis, 6th edn. Prentice Hall, Harlow, UK

  25. Sequeira S, Evtuguin DV, Portugal I, Esculcas AP (2007) Mater Sci Eng C 27(1):172–179

    Article  CAS  Google Scholar 

  26. Shchipunov YuA, Karpenko TU Langmuir (2004) 20:3882–3887

    Article  CAS  Google Scholar 

  27. Brinker CJ, Kirkpatrick RJ, Tallant DR, Bunker BC, Montez B (1988) J Non-Cryst Solids 99:418–429

    Article  CAS  Google Scholar 

  28. Moulder CAM, Damen AAJM (1987) J Non-Cryst Solids 93:387–394

    Article  Google Scholar 

  29. ICDD. PCPDFWIN, v. 1.30 (1997) JCPDS-International centre for diffraction data, Newtown Square, PA

  30. Sosman RB (1964) The phases of silica. Rutgers University Press, New Jersey, 219–220

    Google Scholar 

  31. Dmitry LL, Stanislav VS, Bass JD (2007) Phys Chem Miner 34:11–22

    Google Scholar 

  32. Meyer M, Fischer A, Hoffmann H (2002) J Phys Chem B 106:1528–1533

    Article  CAS  Google Scholar 

  33. Bruhns P, Fischer RX (2000) Eur J Mineral 12:615–624

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Department of Science and Technology for the financial assistance to carry out this work and to Nanophosphor centre, University of Allahabad for XRD facility. We acknowledge with thanks the insightful discussions with Prof. D C Agarwal, I.I.T. Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V., Pandey, S., Singh, S.K. et al. Sol–gel polycondensation of tetraethoxysilane in ethanol in presence of vinyl modified guar gum: synthesis of novel nanocompositional adsorbent materials. J Sol-Gel Sci Technol 47, 58–67 (2008). https://doi.org/10.1007/s10971-008-1715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1715-2

Keywords

Navigation