Skip to main content
Log in

Materials doping through sol–gel chemistry: a little something can make a big difference

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Several examples of sol–gel preparation of doped materials are taken to illustrate the various situations where the doping elements are responsible for the main function of the material or govern its structure. Other examples are used to illustrate that sometimes unexpected effects can be observed like structural modification and the appearance of new properties. Rare earth doped scintillators demonstrate higher homogeneity for materials prepared via sol–gel chemistry when compared with classical solid state reaction. The XRD study of rare earth doped orthoborates shows that doping can affect the vaterite to calcite phase transition observed in these compounds. A Raman spectroscopic study has been performed on doped silica xerogels and it has been shown that doping ions can modify greatly the densification process in these amorphous materials. Finally, it has been evidenced that sol–gel chemistry allows the preparation of bioactive ceramics with enhanced properties. In particular Zn-doped HAP with anti inflammatory properties has been prepared and Sr-doped bioactive glasses have demonstrated superior in-vitro bioactivity as evidenced by PIXE-RBS study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. (a) Sze SM, Ng Kwok K (2006) Physics of semiconductor devices, 3rd edn. Wiley, New York; (b) Yu PY, Cardona M (2004) Fundamentals of semiconductors: physics and materials properties. Springer; (c) Schubert EF (1993) Doping in III–V semiconductors. Cambridge University Press

  2. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer-Verlag

  3. (a) (1992) Proc. of heavy scintillators for scientific and industrial applications, Chamonix, France. Edition Frontiere; (b) (1994) Proc. Symp. scintillator and phosphor materials. Materials Research Society, Pittsburgh, 348; (c) (1995) Proc. of inorganic scintillators and their applications. Delft University Press, Delft, Netherlands; (1997) Shangaï Branch Press, Shangaï China; (1999) Moscow, Russia; (2001) Chamonix, France; (2003) Valencia, Spain

  4. (a) Holl I, Lorenz E, Mageras G (1988) IEEE Trans Nucl Sci 35(1):105–109; (b) Grabmaier BC (1984) IEEE Trans Nucl Sci 31(1):372–376; (c) Brooks FD (1979) Nucl Inst Methods 162(1–3):477–505; (d) Moszynski M, Kapusta M, Mayhugh M et al (1997) IEEE Trans Nucl Sci 44(3):1052–1061; (e) van Eijk CWE (2001) Nucl Inst Methods Phys Res A 460(1):1–14; (f) Derenzo SE, Moses WW, Cahoon JL et al (1990) IEEE Trans Nucl Sci 37(2):203–208

  5. Melcher CL, Schweitzer JS (1992) Nucl Instrum Methods Phys Res A 314:212

    Article  Google Scholar 

  6. Melcher CL, Schweitzer JS U.S. Patents 4,958,080; 5,-025,151; 5,660,627

  7. Mansuy C, Nedelec JM, Mahiou R (2004) J Mater Chem 14:3274–3280

    Article  CAS  Google Scholar 

  8. Mansuy C, Mahiou R, Nedelec JM (2003) Chem Mat 15(17):3242–3244

    Article  CAS  Google Scholar 

  9. Gustafsson T, Klintenberg M, Derenzo SE, Weber MJ, Thomas JO (2001) Acta Cryst C 57:668

    Article  CAS  Google Scholar 

  10. Mansuy C, Leroux F, Mahiou R, Nedelec JM (2005) J Mat Chem 15(38):4129–4135

    Article  CAS  Google Scholar 

  11. Nedelec JM, Mansuy C, Mahiou R (2003) J Mol Struct 651–653C:165–170

    Article  CAS  Google Scholar 

  12. Mansuy C, Nedelec JM, Dujardin C, Mahiou R (2006) J Sol–Gel Sci Technol 38(1):97–105

    Article  CAS  Google Scholar 

  13. Mansuy C, Nedelec JM, Dujardin C, Mahiou R (2004) J Sol–Gel Sci Technol 32:253–258

    Article  CAS  Google Scholar 

  14. Mansuy C, Nedelec JM, Dujardin C, Mahiou R (2007) Opt Mat 29:697–702

    Article  CAS  Google Scholar 

  15. Mansuy C, Tomasella E, Gengembre L, Grimblot J, Mahiou R, Nedelec JM (2006) Thin Solid Films 515:666–669

    Article  CAS  Google Scholar 

  16. Nedelec JM, Avignant D, Mahiou R (2002) Chem Mat 14:651

    Article  CAS  Google Scholar 

  17. Böhlhoff R, Bambauer U, Hoffmann W (1971) Zietschrift fur Kritallographie 133:386

    Google Scholar 

  18. Meyer HJ (1972) Naturwissenschaften 59:215

    Article  CAS  Google Scholar 

  19. Levin EM, Roth RS, Martin JB (1961) Am Mineral 46:1030

    CAS  Google Scholar 

  20. Boyer D, Bertrand-Chadeyrond G, Mahiou R, Lou L, Brioude A, Mugnier J (2001) Opt Mat 15:21–27

    Article  Google Scholar 

  21. Rodriguez-Carvajal J (2004) PROGRAM FullProf.2k—version 3.20, Laboratoire Léon Brillouin (CEA-CNRS), France, 2005 (FullProf.2k manual available on http://www-llb.cea.fr/fullweb/fp2k/fp2k_divers.htm). See also J. Rodriguez-Carvajal, T. Roisnel, EPDIC-8, 23–26 May 2002, Trans. Tech. Publication Ltd, Uppsala, Sweden, Mater Sci Forum 123:443

  22. Rousset JL, Duval E, Boukenter A, Champagnon B, Monteil A, Serughetti J, Dumas J (1988) J Non-Cryst Solids 107:27

    Article  CAS  Google Scholar 

  23. Matos MC, Ilharco LM, Almeida RM (1992) J Non-Cryst Solids 147–148:232

    Article  Google Scholar 

  24. Abidi N, Deroide B, Zanchetta JV, Bourret D, Elmkami H, Rumori P (1996) Phys Chem Glasses 37(4):149

    CAS  Google Scholar 

  25. Menassa PE, Simkin DJ, Taylor P (1986) J Lumin 35:223

    Article  CAS  Google Scholar 

  26. Levy D, Reisfeld R, Avnir D (1984) Chem Phys Lett 109:593

    Article  CAS  Google Scholar 

  27. Ferrari M, Campostrini R, Carturan G, Montagna M (1992) Philos Mag B 65:251

    Article  CAS  Google Scholar 

  28. Kinowski C, Turrell S, Bouazaoui M, Capoen B, Nedelec JM, Hench LL (2004) J Sol–Gel Sci Technol 32:345–348

    Article  CAS  Google Scholar 

  29. Kinowski C, Bouazaoui M, Bechara R, Hench LL, Nedelec JM, Turrell S (2001) J Non-Cryst Solids 291:143

    Article  CAS  Google Scholar 

  30. Galeener FL (1979) Phys Rev B 19(8):4292

    Article  CAS  Google Scholar 

  31. Galeener FL, Mikkelsen JC Jr (1981) Phys Rev B 23(10):5527

    Article  CAS  Google Scholar 

  32. Barrio RA, Galeener FL, Martinez E, Elliott RJ (1993) Phys Rev B 48(21):15672

    Article  CAS  Google Scholar 

  33. Bertoluzza A, Fagnano C, Morelli MA (1982) J Non-Cryst Solids 48:117

    Article  CAS  Google Scholar 

  34. Boukenter A, Duval E (1998) Phil Mag B 77(2):557

    CAS  Google Scholar 

  35. Nedelec JM, Bouazaoui M, Turrell S (1999) J Non-Cryst Solids 243:209

    Article  CAS  Google Scholar 

  36. Kinowski C, Capoen B, Hench LL, Nedelec J-M, Bechara R, Turrell S, Bouazaoui M (2004) J Non-Cryst Solids 345–346:570–574

    Article  CAS  Google Scholar 

  37. Nedelec JM, Bouazaoui M, Turrell S (1999) Phys Chem Glasses 40:264

    CAS  Google Scholar 

  38. Robbe O, Woznica K, Berrier E, Ehrhart G, Capoen B, Bouazaoui M, Turrell S (2006) Thin Solid Films 515(1):73–79

    Article  CAS  Google Scholar 

  39. Nedelec JM, Capoen B, Turrell S, Bouazaoui M (2001) Thin Solid Films 382:81

    Article  CAS  Google Scholar 

  40. Berrier E, Capoen B, Bouazaoui M (2005) Glass Technol 46(2):89–93

    CAS  Google Scholar 

  41. Trimmel G, Schubert U (2001) J Non-Cryst Solids 296:188–200

    Article  CAS  Google Scholar 

  42. Hench LL, Splinter RJ, Greenlee TK, Allen WC (1971) J Biomed Mater Res 2:117

    Article  Google Scholar 

  43. Hench LL (1998) J Am Ceram Soc 81(7):1705–1728

    Article  CAS  Google Scholar 

  44. Degroot K (1980) Biomaterials 1(1):47–50

    Article  CAS  Google Scholar 

  45. Ducheyne P (1987) J Biomed Mat Res 21(A2):219–236

    CAS  Google Scholar 

  46. Doremus RH (1992) J Mat Sci 27(2):285–297

    Article  CAS  Google Scholar 

  47. Li R, Clark AE, Hench LL (1991) J Appl Biomater 2:231

    Article  CAS  Google Scholar 

  48. Lao J, Nedelec JM, Moretto P, Jallot E (2006) Nucl Intrum Methods B 245/2:511–518

    Article  CAS  Google Scholar 

  49. Lao J, Nedelec JM, Moretto P, Jallot E (2007) Nucl Instrum Methods B 261:488–493

    Article  CAS  Google Scholar 

  50. Bloebaum RD, DuPont JA (1993) J Arthroplasty 8:195–202

    Article  CAS  Google Scholar 

  51. Bloebaum RD, Beeks J, Dorr LD, Savory CG, DuPont JA, Hofmann AA (1994) Clin Orthop 298:19–26

    Google Scholar 

  52. Laquerriere P, Grandjean-Laquerriere A, Jallot E, Balossier G, Frayssinet P, Guenounou M (2003) Biomaterials 24:2739–2747

    Article  CAS  Google Scholar 

  53. Grandjean-Laquerriere A, Laquerriere P, Laurent-Maquin D, Guenounou M, Phillips TM (2004) Biomaterials 25(28):5921–5927

    Article  CAS  Google Scholar 

  54. Trindade MCD, Lind M, Nakashima Y, Sun D, Goodman SB, Schurman DJ, Smith RL (2001) Biomaterials 22:2067–2073

    Article  CAS  Google Scholar 

  55. Yamaguchi M, Inamoto K, Suketa Y (1986) Res Exp Med 186(5):337–342

    Article  CAS  Google Scholar 

  56. Hashizume M, Yamaguchi M (1993) Mol Cell Biochem 122(1):59–64

    Article  CAS  Google Scholar 

  57. Kishi S, Yamaguchi M (1994) Biochem Pharmacol 48(6):1225–1230

    Article  CAS  Google Scholar 

  58. Bao B, Prasad AS, Beck FW, Godmere M (2003) Am J Physiol Endocrinol Metab 285(5):1095

    Google Scholar 

  59. Jallot E, Nedelec JM, Grimault AS, Chassot E, Laquerriere P, Grandjean-Laquerriere A, Laurent-Maquin D (2005) Colloids Surf B 42:205–210

    Article  CAS  Google Scholar 

  60. Grandjean-Laquerriere A, Laquerriere P, Jallot E, Nedelec JM, Guenounou M, Laurent-Maquin D, Philips T (2006) Biomaterials 27:3195–3200

    Article  CAS  Google Scholar 

  61. Laquerriere P, Grandjean-Laquerriere A, Jallot E, Nedelec J-M A Zn-substituted hydroxyapatite with reduced inflammatory properties and uses thereof. (US 60/751,977)

  62. Meunier PJ, Lorenc RS, Smith IG (2002) Osteoporos Int 13(3):66

    Google Scholar 

  63. Marie PJ (2005) Curr Opin Pharmacol 5:633–636

    Article  CAS  Google Scholar 

  64. Jensen JEB, Stang H, Kringsholm B (1997) Bone 20(4):104–108

    Google Scholar 

Download references

Acknowledgements

The work described in this paper spread over the last 10 years and could have not been possible without numerous collaborations. Among them, the authors would like to thank particularly M. Bouazaoui and B. Capoen from University of Lille, M. Ferrari from CNR Trento, L. L. Hench from Imperial College and R. Mahiou from University of Clermont-Ferrand. Financial support from the French FNS under project LuNaTIC (ACI Nanostructures) and ANR under project Bioverres (PNANO 2005) and Nanobonefiller (PNANO 2006) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Nedelec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedelec, JM., Courtheoux, L., Jallot, E. et al. Materials doping through sol–gel chemistry: a little something can make a big difference. J Sol-Gel Sci Technol 46, 259–271 (2008). https://doi.org/10.1007/s10971-007-1665-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1665-0

Keywords

Navigation