Skip to main content
Log in

Sol–gel nanohybrid materials prepared via supramolecular organization

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This article reports on recent progress in the synthesis of sol–gel nanohybrid materials based on the supramolecular organization. A variety of nanohybrid materials has been obtained by molecular design of the precursors and systematical control of synthetic processes. Organoalkoxysilanes with covalently attached hydrophobic tails are hydrolyzed to form amphiphilic molecules containing silanol groups, leading to the formation of vesicular structures. The obtained hybrid has analogous structures of both cell membrane and silica particle and was named “cerasome”. The cerasome can achieve the hierarchical three-dimensional organization of vesicular particles on the substrate. The nanohybrids are developed not only by the hydrophobic interaction of amphiphilic molecules but also by the electrostatic interaction. The layer-by-layer (LbL) assembly of the water-soluble titania precursor with polycation is adopted for nanohybrid coatings containing titania nanoparticles on the substrates. In addition, preparation of hybrid hollow capsules via LbL assembly and sol–gel method with colloid templating is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sanchez C, Ribot F (1994) New J Chem 18:1007

    CAS  Google Scholar 

  2. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Bull Chem Soc Jpn 63:988

    Article  CAS  Google Scholar 

  3. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  4. Kruk M, Antochshuk V, Jaroniec M (2000) J Phys Chem B 104:11465

    Article  CAS  Google Scholar 

  5. Göltner G, Berton B, Krämer E, Antonietti M (1999) Adv Mater 11:395

    Article  Google Scholar 

  6. Schmidt-Winkel P, Glinka CJ, Stucky GD (2000) Langmuir 16:356

    Article  CAS  Google Scholar 

  7. Sims SD, Walsh D, Mann S (1998) Adv Mater 10:154

    Article  Google Scholar 

  8. Hatano T, Bae A-H, Takeuchi M, Fujita N, Kaneko K, Ihara H, Takafuji M, Shinkai S (2004) Angew Chem Int Ed 43:465

    Article  CAS  Google Scholar 

  9. Sakata K, Kunitake T (1990) J Chem Soc Chem Commun 504:27

    Google Scholar 

  10. Shimojima A, Kuroda K (2006) Chem Rec 6:53

    Article  CAS  Google Scholar 

  11. Moreau JJE, Pichon BP, Wong Chi Man M, Bied C, Pritzkow H, Bantignies J-L, Dieudonné P, Sauvajol J-L (2004) Angew Chem Int Ed 43:203

    Article  CAS  Google Scholar 

  12. Ruiz-Hitzky E (2003) Chem Rec 3:88

    Article  CAS  Google Scholar 

  13. Ariga K (2004) Chem Rec 3:297

    Article  CAS  Google Scholar 

  14. Vinu A, Hossain KZ, Ariga K (2005) J Nanosci Nanotechnol 5:347

    Article  CAS  Google Scholar 

  15. Vinu A, Mori T, Ariga K (2006) Sci Technol Adv Mater 7:753

    Article  CAS  Google Scholar 

  16. Katagiri K, Ariga K, Kikuchi J (1999) Chem Lett 661:12

    Google Scholar 

  17. Katagiri K, Hamasaki R, Ariga K, Kikuchi J (2002) J Am Chem Soc 124:7892

    Article  CAS  Google Scholar 

  18. Katagiri K, Hashizume M, Ariga K, Terashima T, Kikuchi J (2007) Chem Eur J 13:5272

    Article  CAS  Google Scholar 

  19. Bangham AD, Horne RW (1964) J Mol Biol 8:660

    Article  CAS  Google Scholar 

  20. Sessa G, Weissmann G (1968) J Biol Chem 243:4364

    CAS  Google Scholar 

  21. Regen SL, Singh A, Oehme G, Singh M (1982) J Am Chem Soc 104:791

    Article  CAS  Google Scholar 

  22. Allen TM (1996) Curr Opin Colloid Interface Sci 1:645

    Article  CAS  Google Scholar 

  23. Davidson SKM, Regen SL (1997) Chem Rev 97:1269

    Article  CAS  Google Scholar 

  24. Murakami Y, Kikuchi J, Hisaeda Y, Hayashida O (1996) Chem Rev 96:721

    Article  CAS  Google Scholar 

  25. Steinberg-Yfrach G, Gigaud J-L, Durantini EN, Moore AL, Gust D, Moore TA (1998) Nature 392:479

    Article  CAS  Google Scholar 

  26. Decher G, Hong J-D (1991) Ber Bunsen-Ges Phys Chem 95:1430

    CAS  Google Scholar 

  27. Ariga K, Hill JP, Ji Q (2007) Phys Chem Chem Phys 9:2319

    Article  CAS  Google Scholar 

  28. Sauerbrey G (1959) Z Phys 155:206

    Article  CAS  Google Scholar 

  29. Hagfeldt A, Gratzel M (1995) Chem Rev 95:49

    Article  CAS  Google Scholar 

  30. Baskaran S, Song L, Liu J, Chen YL, Graff GL (1998) J Am Ceram Soc 81:401

    Article  CAS  Google Scholar 

  31. Hofman-Caris CHM (1994) New J Chem 18:1087 and references therein

  32. Caruso F (2001) Adv Mater 13:11

    Article  CAS  Google Scholar 

  33. Lim F (1984) Biomedical applications of microencapsulation. CRC Press, Boca Raton, FL

    Google Scholar 

  34. Caruso F (ed) (2004) Colloids and colloid assemblies. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Acknowledgments

The author is grateful to the coworkers whose names appear in the references for their contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyofumi Katagiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katagiri, K. Sol–gel nanohybrid materials prepared via supramolecular organization. J Sol-Gel Sci Technol 46, 251–257 (2008). https://doi.org/10.1007/s10971-007-1646-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1646-3

Keywords

Navigation