Skip to main content
Log in

Design of oxide nanoparticles by aqueous chemistry

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The elaboration of nanoparticles designed for technological applications in various fields such as catalysis, optics, magnetism, electronics… needs the strict control of their characteristics, especially chemical composition, crystalline structure, size, and shape. These characteristics bring the physical properties (color, magnetism, band gap…) of the material, and also the surface to volume ratio of particles which is of high importance when they are used as a chemically active or reactive support, in catalysis for instance. The nanoparticles may have also to be surface functionalized by various species, and/or dispersed in aqueous or non aqueous media. We will show that the aqueous chemistry of metal cations is a very versatile and attractive way for the design of oxide nanomaterials, allowing the control of size, shape, and crystalline structure for polymorphic materials. Aqueous surface chemistry, including adsorption of various species, may be used to modify the morphology of nanoparticles. In some cases, redox processes can be involved to control the morphology of nanoparticles. Technologically important nanomaterials such as titania, alumina, and iron oxides are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ijima S, (1991) Nature 364, 56; Ijima S, Ichihashi T (1993) Nature 363, 603

  2. Berry CR (1967) Phys Rev 161:848

    Article  CAS  Google Scholar 

  3. Rossetti R, Nakahara S, Brus LE (1983) J Chem Phys 79:1086

    Article  CAS  Google Scholar 

  4. Efros AA, Efros AL (1982) Sov Phys Semicond 16:1209

    CAS  Google Scholar 

  5. Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706

    Article  CAS  Google Scholar 

  6. Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  7. Jolivet JP (2000) Metal oxide chemistry and synthesis. From solution to solid state. Wiley, Chichester

  8. Haruta M, Delmon B (1986) J Chim Phys 83:859

    CAS  Google Scholar 

  9. Jolivet JP, Chanéac C, Tronc E (2004a) Chem Comm 481

  10. Euzen P, Raybaud P, Krokidis X, Toulhoat H, Le Loaer JL, Jolivet JP, Froidefond C, (2002) Alumina. In: Schüth F, Sing KSW, Weitkamp J (eds) Handbook of porous materials, Wiley-VCH, chap. 4.7.2 pp 1591–1677

  11. Pottier A, Cassaignon S, Chanéac C, Villain F, Tronc E, Jolivet JP (2003) J Mater Chem 13:877–882

    Article  CAS  Google Scholar 

  12. Lemaire BJ, Davidson P, Ferré J, Jamet JP, Panine P, Dozo I, Jolivet JP (2002) Phys Rev Let 88:125507–1

    Article  CAS  Google Scholar 

  13. Koelsch M, Cassaignon S, Jolivet JP (2004) Mat Res Soc Symp Proc 822:S5.3.1

    Google Scholar 

  14. Combes JM, Manceau A, Calas G (1990) Geochemica Cosmochem Acta 54:1083

    Article  CAS  Google Scholar 

  15. Jolivet JP, Tronc E, Chanéac C, Chimie CR (2002) 5:659

  16. Jolivet JP, Belleville P, Tronc E, Livage J (1992) Clays Clay Miner 40:531

    Article  CAS  Google Scholar 

  17. Tronc E, Belleville P, Jolivet JP, Livage J (1992) Langmuir 8:313

    Article  CAS  Google Scholar 

  18. Vayssières L, Chanéac C, Tronc E, Jolivet JP (1998) J Colloid Interface Sci 205:205

    Article  Google Scholar 

  19. Jolivet JP, Froidefond C, Pottier A, Chanéac C, Cassaignon S, Tronc E, Euzin P (2004) J Mater Chem 14:3281

    Article  CAS  Google Scholar 

  20. Jolivet JP, Tronc E (1988) J Colloid Interface Sci 125:688

    Article  CAS  Google Scholar 

  21. Matijevic E (1980) Pure and Appl Chem 52:1179

    Article  CAS  Google Scholar 

  22. Cornell RM, Schwertmann U (2003) The iron oxides, structure, properties, reactions, occurrence and uses. VCH Weinheim Germany Publishers

  23. Schwertmann U, Friedl J, Stanjek H (1999) J Colloid Interface Sci 209:215

    Article  CAS  Google Scholar 

  24. Bottero JY, Manceau A, Villieras F, Tchoubar D (1994) Langmuir 10:316

    Article  CAS  Google Scholar 

  25. Matijevic E, Scheiner P (1978) J Colloid Interface Sci 63:509

    Article  CAS  Google Scholar 

  26. Sugimoto T, Muramatsu A, Sakata K, Shindo D (1993) J Colloid Interface Sci 158:420

    Article  CAS  Google Scholar 

  27. Bailey JK, Brinker CJ, Mecartney ML (1993) J Colloid Interface Sci 157:1

    Article  CAS  Google Scholar 

  28. Pottier A, Chanéac C, Tronc E, Mazerolles L, Jolivet JP (2001) J Mater Chem 11:1116

    Article  CAS  Google Scholar 

  29. Dessombz A, Chiche D, Davidson P, Panine P, Chanéac C, Jolivet JP (2007) J Amer Chem Soc 129:5904

    Article  CAS  Google Scholar 

  30. Keesmann I (1966) Z Anorg Allg Chem 346:31

    Article  Google Scholar 

  31. Arnal P, Corriu JPR, Leclercq D, Mutin PH, Vioux A (1997) Chem Mater 9:694

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Jolivet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jolivet, JP., Cassaignon, S., Chanéac, C. et al. Design of oxide nanoparticles by aqueous chemistry. J Sol-Gel Sci Technol 46, 299–305 (2008). https://doi.org/10.1007/s10971-007-1645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1645-4

Keywords

Navigation