Skip to main content
Log in

Process optimization of sol–gel derived colloidal photonic crystals

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Three-dimensional photonic bandgap structures have been synthesized by a colloidal/sol–gel route, starting with the self-organization of polystyrene microspheres into opals by dip-coating, sedimentation or vertical convective self-assembly, followed by sol–gel infiltration of the interstices with silica, titania or a silica-titania mixture, by dip-coating and removal of the polymeric template. The structural and optical properties of the opals and inverse opals prepared by this method have been studied by scanning electron microscopy and visible infra-red spectroscopies to assess the relationship between their structure and the photonic properties obtained. The optical transmission and reflection spectra of the opal and inverse opal structures have also been simulated by the Translight Software code, using the Transfer Matrix method, for different numbers of stacked layers, showing reasonable agreement with the experimental results. By optimizing the fabrication parameters, colloidal photonic crystals of good quality have been obtained, with reduced defect concentrations and increased mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals: Molding the flow of light. Princeton University Press, p 3

  2. Lin SY, Fleming JG, Hetherington DL, Smith BK, Biswas R, Ho K-M, Sigalas MM, Zubrzycki W, Kurtz SR, Bur J (1998) Nature 394:251

    Article  CAS  Google Scholar 

  3. Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, Lopez C, Meseguer F, Miguez H, Mondla JP, Ozin GA, Toader O, van Driel HM (2000) Nature 405:427

    Google Scholar 

  4. Tarhan II, Zinkin MP, Watson GH (1995) Opt Lett 20:1571

    Article  CAS  Google Scholar 

  5. Yablonovitch E, Gmitter TJ, Meade RD, Rappe AM, Brommer KD, Joannopoulous JD (1991) Phys Rev Lett 67:3380

    Article  CAS  Google Scholar 

  6. Gaponenko SV, Prokofiev AV, Kapitonov AM, Bogomolov VN, Eychmuller A, Rogach AL (1998) JETP Lett 68:142

    Article  Google Scholar 

  7. Miguez H, Lopez C, Meseguer F, Blanco A, Vazquez L, Mayoral R, Ocaña M, Fornés V, Mifsud A (1997) Appl Phys Lett 71:1148

    Article  CAS  Google Scholar 

  8. Sievenpiper DF, Sickmiller ME, Yablonovitch E (1996) Phys Rev Lett 76:2480

    Article  CAS  Google Scholar 

  9. McComb DW, Treble BM, Smith CJ, De La Rue RM, Johnson NP (2001) J Mater Chem 11:142

    Article  CAS  Google Scholar 

  10. Yablonovitch E (1987) Phys Rev Lett 58:2059

    Article  CAS  Google Scholar 

  11. John S (1987) Phys Rev Lett 58:2486

    Article  CAS  Google Scholar 

  12. Sözüer HS, Haus JW, Inguva R (1992) Phys Rev B 45:13962

    Article  Google Scholar 

  13. Busch K, John S (1998) Phys Rev E 58:3896

    Article  CAS  Google Scholar 

  14. Almeida RM, Wang Z (2002) Proc SPIE 24:4655

    Google Scholar 

  15. Almeida RM, Portal S (2003) Curr Opin Solid State Mater Sci 7:151

    Article  CAS  Google Scholar 

  16. Almeida RM, Rodrigues AS (2003) J Non-Cryst Solids 326&327:405

    Article  CAS  Google Scholar 

  17. Almeida RM, Gonçalves MC, Portal S (2004) J Non-Cryst Solids 345&346:562

    Article  CAS  Google Scholar 

  18. Almeida RM, Gonçalves MC (2006) Sol–Gel derived photonic bandgap structures. In: Balda R (ed) Photonic Glasses, Research Signpost, Kerala, India, p 67

    Google Scholar 

  19. López C (2003) Adv Mater 15:1679

    Article  CAS  Google Scholar 

  20. Kuwabara M (2005) Photonic crystals fabricated by sol–gel process. In: Sakka S (ed) Handbook of sol–gel science and technology. Processing characterization and applications, Kluwer Academic Publishers, p 263

    Google Scholar 

  21. Weast RC, Astle MJ (1981) Handbook of chemistry and physics, 61st edn. CRC Press, Boca Raton, p F45

  22. Atkins PW (2000) Physical chemistry, 6th edn. Oxford University Press, Oxford, p 158

    Google Scholar 

  23. Sanders JV (1964) Nature 204:1151

    Article  Google Scholar 

  24. Larsen AE, Grier DG (1997) Nature 385:230

    Article  CAS  Google Scholar 

  25. Okubo T (1990) J Chem Soc Faraday Trans 86:2871

    Article  CAS  Google Scholar 

  26. Carlson RJ, Asher SA (1984) Appl Spectrosc 38:297

    Article  CAS  Google Scholar 

  27. Woodcock LV (1997) Nature 385:141

    Article  CAS  Google Scholar 

  28. Kuai S-L, Hu X-F, Haché A, Truong V-V (2004) J Crystal Growth 267:317

    Article  CAS  Google Scholar 

  29. Nozar P, Dionigi C, Migliori A, Calestani G, Cademartiri L (2003) Synthetic Metals 139:667

    Article  CAS  Google Scholar 

  30. Lopez C, Vazquez L, Meseguer F, Mayoral R, Ocana M, Miguez H (1997) Superlattices Microstruct 22:399

    Article  CAS  Google Scholar 

  31. Boedecker G, Henkel C (2003) Optics Express 11:1590

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. A. Chiasera and Dr. M. Ferrari for their optical reflectivity measurements (Fig. 6(a)). The authors tank Andrew L. Reynolds, the Photonic Band Gap Materials Research Group within the Optoelectronics Research Group of the Department of Electronics & Electrical Engineering, the University of Glasgow, and also Professor J. Pendry, Professor P.M. Bell, Dr. A.J. Ward and Dr. L. Martin Moreno from Imperial College, London, for having developed and make available the Translight Software code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Clara Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, M.C., Brás, J. & Almeida, R.M. Process optimization of sol–gel derived colloidal photonic crystals. J Sol-Gel Sci Technol 42, 135–143 (2007). https://doi.org/10.1007/s10971-007-1551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1551-9

Keywords

Navigation