Skip to main content
Log in

Patterning porous matrices and planar substrates with quantum dots

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silica hydrogels and planar substrates were patterned with CdS nanoparticles using a photolithographic method based on the photo dissociation of thiols and cadmium-thiolate complexes. Silica hydrogels were prepared via a standard base-catalyzed route. The solvent was exchanged with an aqueous solution of CdSO4 and 2-mercaptoethanol, and the samples were then exposed to a focused ultraviolet beam. Planar substrates were patterned by illuminating a precursor solution spin coated on the substrates. CdS nanoparticles formed in the illuminated spots, and had a diameter below about 2 nm. The diameter of the spots illuminated by the UV beam could be varied from a few hundred to a few μm, on both hydrogels and planar substrates. Samples were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and optical absorption, photoluminescence and Raman spectroscopies. All these techniques confirmed the chemical identity of the CdS nanoparticles. To investigate the mechanism of nanoparticle formation, we took absorption spectra of the precursor solution as a function of irradiation time. In unirradiated solutions, we noticed a maximum at 250 nm, characteristic of Cd-thiolate complexes. The absorption at 250 nm decreased with increasing irradiation time. A new band appeared at 265 nm for exposures around 5 min, and that band shifted to 290 nm in samples exposed for 10 min. A yellow precipitate formed after about 30 min. XRD showed that the precipitate was cubic CdS, with a mean particle size of 1.4 nm. We attribute formation of CdS to the photodissociation of the thiols and of the Cd-thiolates. UV irradiation of these precursors yields a series of species that can react with Cd2+, such as RS·, S2− and H2S. Small CdS nanoparticles form in the initial stages of illumination, and present absorption bands in the 265–290 nm region. These CdS aggregates grow, coalesce and precipitate for longer irradiation times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For example: Evident Technologies, 216 River Street, Suite 200, Troy, New York 12180; Quantum Dot Corp. 26118 Research Road Hayward, CA 94545

  2. Sundar VC, Eisler H-J, Bawendi MG (2002) Adv Mater 14:739

    Article  CAS  Google Scholar 

  3. Capoen B, Gacoin T, Nedelec JM, Turrell S, Bouazaoui M (2001) J Mater Sci 36:2565

    Article  CAS  Google Scholar 

  4. Tohge N, Asuka M, Minami T (1990) SPIE 1328:125

    CAS  Google Scholar 

  5. Bertino MF, Gadipalli RR, Story JG, Williams CG, Zhang G, Sotiriou-Leventis C, Tokuhiro AT, Guha S, Leventis N (2004) Appl Phys Lett 85:6007

    Article  CAS  Google Scholar 

  6. Leventis N, Elder IA, Rolison DR, Anderson ML, Merzbacher CI (1999) Chem Mater 11:2337

    Article  Google Scholar 

  7. Hayes D, Mitit OI, Nenadovit MT, Swayambunathan V, Meisel D (1989) J Phys Chem 93:4603

    Article  CAS  Google Scholar 

  8. Mostafavi M, Liu YP, Pernot P, Belloni J (2000) Radiat Phys Chem 59:49

    Article  CAS  Google Scholar 

  9. Gaspari G, Granzow A (1970) J Phys Chem 74:836

    Article  Google Scholar 

  10. Knight AR (1974) In: Patai S (ed) The chemistry of the thiol group, Part 1. John Wiley & Sons Ltd., London, Chapter 10

  11. De Brabander HF, Van Poucke LC (1974) J Coord Chem 3:301; Said FF, Tuck DG (1982) Inorg Chem Acta 59:1

  12. Bao H, Gong Y, Li Z, Gao M (2004) Chem Mater 16:3853

    Article  CAS  Google Scholar 

  13. Rosenthal NA, Oster G (1961) J Am Chem Soc 83:4445

    Article  CAS  Google Scholar 

  14. Turk T, Resch U, Fox MA, Vogler A (1992) Inorg Chem 31:1854

    Article  Google Scholar 

  15. Turk T, Resch U, Fox MA, Vogler A (1992) J Phys Chem 96:3818

    Article  Google Scholar 

  16. Fischer Ch-H, Henglein A (1989) J Phys Chem 93:5578

    Article  CAS  Google Scholar 

  17. Mirkovic T, Hines MA, Nair PS, Scholes GD (2005) Chem Mater 17:3451

    Article  CAS  Google Scholar 

  18. Hasegawa Y, Afzaal M, O’Brien P, Wada Y, Yanagida S (2005) Chem Commun 242–243

  19. Bertino MF, Hund JF, Sosa J, Zhang G, Sotiriou-Leventis C, Leventis N, Tokuhiro AT, Terry J (2004) J Non-Cryst Solids 333:108

    Article  CAS  Google Scholar 

  20. Dance IG, Choy A, Scudder ML (1984) J Am Chem Soc 106:6285

    Article  CAS  Google Scholar 

  21. Matsumoto H, Sakata T, Mori H, Yoneyama H (1996) J Phys Chem 100:13781

    Article  CAS  Google Scholar 

  22. Nosaka Y (1991) J Phys Chem 95:5054

    Article  CAS  Google Scholar 

  23. Lippens PE, Lannoo M (1989) Phys Rev B 39:10935

    Article  CAS  Google Scholar 

  24. Huang J, Sooklal K, Murphy CJ, Ploehn HJ (1999) Chem Mater 11:3595

    Article  CAS  Google Scholar 

  25. Green WH, Le KP, Grey J, Au TT, Sailor MJ (1997) Science 276:1826

    Article  CAS  Google Scholar 

  26. Bekiari V, Lianos P (1998) Langmuir 14:3459

    Article  CAS  Google Scholar 

  27. Canham LT, Loni A, Calcott PDJ, Simons AJ, Reeves C, Houlton MR, Newey JP, Nash KJ, Cox TI (1996) Thin Solid Films 276:112

    Article  CAS  Google Scholar 

  28. Rolo AG, Vieira LG, Gomes MJM, Ribeiro JL, Belsley MS, dos Santos MP (1998) Thin Solid Films 312:348

    Article  CAS  Google Scholar 

  29. Kundu M, Khosravi AA, Kulkarni SK, Singh P (1997) J Mater Sci 32:245

    Article  CAS  Google Scholar 

  30. Khomane RB, Manna A, Mandale AB, Kulkarni BD (2002) Langmuir 18:8237

    Article  CAS  Google Scholar 

  31. Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-MM (2002) Nano Lett 2:957

    Article  CAS  Google Scholar 

  32. Kaur I, Pandya DK, Chopra KL (1980) J Electrochem Soc 127:943

    Article  CAS  Google Scholar 

  33. Sharma NC, Kainthla RC, Pandya DK, Chopra KL (1979) Thin Solid Films 60:55

    Article  CAS  Google Scholar 

  34. Kitaev GA, Uritskaya AA, Mokrushin SG (1965) Zhurnal Fizicheskoi Khimii 38:2065

    Google Scholar 

  35. Bertino MF, Gadipalli RR, Martin LA, Heckman B, Story JG, Leventis N, Fraundorf P, Guha S, to be submitted to J Sol-Gel Sci Technol, in press

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. F. Bertino or N. Leventis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertino, M.F., Gadipalli, R.R., Martin, L.A. et al. Patterning porous matrices and planar substrates with quantum dots. J Sol-Gel Sci Technol 39, 299–306 (2006). https://doi.org/10.1007/s10971-006-8165-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-8165-5

Keywords

Navigation