Skip to main content
Log in

Influence of the synthesis conditions of gold nanoparticles on the structure and architectonics of dipeptide composites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A wide variety of peptides and their natural ability to self-assemble makes them very promising candidates for the fabrication of solid-state devices based on nano- and mesocrystals. In this work, we demonstrate an approach to form peptide composite layers with gold nanoparticles through in situ reduction of chloroauric acid trihydrate by dipeptide and/or dipeptide/formaldehyde mixture in the presence of potassium carbonate at different ratios of components. Appropriate composition of components for the synthesis of highly stable gold colloidal dispersion with particle size of 34–36 nm in dipeptide/formaldehyde solution is formulated. Infrared spectroscopy results indicate that dipeptide participates in the reduction process, conjugation with gold nanoparticles and the self-assembly in 2D, which accompanied by changing peptide chain conformations. The structure and morphology of the peptide composite solid layers with gold nanoparticles on gold, mica and silica surfaces are characterized by atomic force microscopy. In these experiments, the flat particles, dendrites, chains, mesocrystals and Janus particles are observed depending on the solution composition and the substrate/interface used. The latter aspect is studied on the molecular level using computer simulations of individual peptide chains on gold, mica and silica surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmad A, Senapathi S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553. doi:10.1021/la026772l

    Article  Google Scholar 

  • Alfimov MV, Kadushnikov RM, Shturkin NA, Alievsky VM, Lebedev-Stepanov PV (2006) Imitative simulation of the processes of self-organization of nanoparticles. Ross Nanotecknol (Rus) 1:127–133

    Google Scholar 

  • Ariga K, Li J, Fei J, Ji Q, Hill JP (2016) Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv Mater 28:1251–1286. doi:10.1002/adma.201502545

    Article  Google Scholar 

  • Aryal S, Remant Bahadur KC, Bhattarai N, Kim CK, Kim HY (2006) Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids. J Colloid Interface Sci 299:191–197. doi:10.1016/j.jcis.2006.01.045

    Article  Google Scholar 

  • Bahrig L, Hickey SG, Eychmüller A (2014) Mesocrystalline materials and the involvement of oriented attachment—a review. CrystEngComm 16:9408–9424. doi:10.1039/C4CE00882K

    Article  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170. doi:10.1016/j.materresbull.2007.06.020

    Article  Google Scholar 

  • Bedford NM, Hughes ZE, Tang Z, Li Y, Briggs BD, Ren Y, Swihart MT, Petkov VG, Naik RR, Knecht MR, Walsh TR (2016) Sequence-dependent structure/function relationships of catalytic peptide-enabled gold nanoparticles generated under ambient synthetic conditions. J Am Chem Soc 138:540–548. doi:10.1021/jacs.5b09529

    Article  Google Scholar 

  • Bhargava SK, Booth JM, Agrawal S, Coloe P, Kar G (2005) Gold nanoparticle formation during bromoaurate reduction by amino acids. Langmuir 21:5949–5956. doi:10.1021/la050283e

    Article  Google Scholar 

  • BIOVIA Materials Studio (2014) version 8.0, BIOVIA, San Diego, CA, USA

  • Brorsson AC, Kumita JR, MacLeod I, Bolognesi B, Speretta E, Luheshi LM, Knowles TPJ, Dobson CM, Crowther DC (2010) Methods and models in neurodegenerative and systemic protein aggregation diseases. Front Biosci 15:373–396. doi:10.2741/3626

    Google Scholar 

  • Brown S, Sarikaya M, Johnson E (2000) A genetic analysis of crystal growth. J Mol Biol 299:725–735. doi:10.1006/jmbi.2000.3682

    Article  Google Scholar 

  • Conejero-Muriel M, Contreras-Montoya R, Díaz-Mochón JJ, de Cienfuegos LÁ, Gavira JA (2015) Protein crystallization in short-peptide supramolecular hydrogels: a versatile strategy towards biotechnological composite materials. CrystEngComm 17:8072–8078. doi:10.1039/C5CE00850F

    Article  Google Scholar 

  • Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269. doi:10.1021/cr050943k

    Article  Google Scholar 

  • Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29:3303–3308. doi:10.1021/bi00465a022

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  • Gong Y, Chen X, Lu Y, Yang W (2015) Self-assembled dipeptide-gold nanoparticle hybrid spheres for highly sensitive amperometric hydrogen peroxide biosensors. Biosens Bioelectron 66:392–398. doi:10.1016/j.bios.2014.11.029

    Article  Google Scholar 

  • Grzybowski BA (2014) Charged nanoparticles crystallizing and controlling crystallization: from coatings to nanoparticle surfactants to chemical amplifiers. CrystEngComm 16:9368–9380. doi:10.1039/C4CE00689E

    Article  Google Scholar 

  • Gus’kova OA, Khalatur PG, Khokhlov AR, Chinarev AA, Tsygankova SV, Bovin NV (2010) Surface structures of oligoglycines: a molecular dynamics simulation. Rus J Bioorg Chem 36:574–580. doi:10.1134/S1068162010050043

    Article  Google Scholar 

  • Guskova O, Schünemann C, Eichhorn K-J, Walzer K, Levichkova M, Grundmann S, Sommer J-U (2013) Light absorption in organic thin films: importance of oriented molecules. J Phys Chem C 117:17285–17293. doi:10.1021/jp4048083

    Article  Google Scholar 

  • Han G, Thirunahari S, Shan Chow P, Tan RBH (2013) Resolving the longstanding riddle of pH-dependent outcome of glycine polymorphic nucleation. CrystEngComm 15:1218–1224. doi:10.1039/C2CE26594J

    Article  Google Scholar 

  • Heinz H, Farmer BL, Pandey RB, Slocik JM, Patnaik SS, Pachter R, Naik RR (2009) Nature of molecular interactions of peptides with gold, palladium, and Pd–Au bimetal surfaces in aqueous solution. J Am Chem Soc 131:9704–9714. doi:10.1021/ja900531f

    Article  Google Scholar 

  • Horovitz O, Mocanu A, Tomoaia G, Bobos L, Dubert D, Daian I, Yusanis T, Tomoaia-Cotisel M (2007) Lysine mediated assembly of gold nanoparticles. Stud Univ Babes Bolyai Chem 52:97–108

    Google Scholar 

  • Jiang S, Granick S, Schneider HJ (2012) Janus particles synthesis, self-assembly and applications. RSC, London

    Book  Google Scholar 

  • Karki I, Wang H, Geise NR, Wilson BW, Lewis JP, Gullion T (2015) Tripeptides on gold nanoparticles: structural differences between two reverse sequences as determined by solid-state NMR and DFT calculations. J Phys Chem B 119:11998–12006. doi:10.1021/acs.jpcb.5b04299

    Article  Google Scholar 

  • Kim J, Rheem Y, Yoo B, Chong Y, Bozhilov KN, Kim D, Sadowsky MI, Hur H-G, Myung NV (2010) Peptide-mediated shape-and size-tunable synthesis of gold nanostructures. Acta Biomater 6:2681–2689. doi:10.1016/j.actbio.2010.01.019

    Article  Google Scholar 

  • Knowles TPJ, Buehler MJ (2011) Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol 6:469–479. doi:10.1038/nnano.2011.102

    Article  Google Scholar 

  • Laura Gambino G, Grassi A, Marletta G (2006) Molecular modeling of interactions between l-lysine and functionalized quartz surfaces. J Phys Chem B 110:4836–4845. doi:10.1021/jp0508610

    Article  Google Scholar 

  • Lerner EJ (2004) Biomimetic nanotechnology: researchers mimic biology to form nanoscale devices. Ind Phys 10:16–19

    Google Scholar 

  • Liang FX, Zhang CL, Yang ZZ (2014) Rational Design and Synthesis of Janus Composites. Adv Mater 26:6944–6949. doi:10.1002/adma.201305415

    Article  Google Scholar 

  • Losev EA, Mikhailenko MA, Achkasov AF, Boldyreva EV (2013) The effect of carboxylic acids on glycine polymorphism, salt and co-crystal formation. A comparison of different crystallisation techniques. New J Chem 37:1973–1981. doi:10.1039/C3NJ41169A

    Article  Google Scholar 

  • Loskutov AI, Loginov BA, Oshurko VB, Romash EV, Kosheleva NV, Falin AV (2013a) Structural transitions in thin layers of peptide composite materials with silver and gold nanoparticles: influence of temperature and humidity. Nanotechnics (Rus) 2:27–33

    Google Scholar 

  • Loskutov AI, Uryupina OY, Grigor’ev SN, Oshurko VB, Roldughin VI (2013b) Structure and electrophysical properties of self-organized composite layers based on peptide and silver nanoparticles. Colloid J 75:301–311. doi:10.1134/S1061933X13030113

    Article  Google Scholar 

  • Loskutov AI, Uryupina OY, Grigor’ev SN, Kosheleva NV, Oshurko VB, Romash EV, Senchikhin IN, Falin AV (2015) Investigation of a structure of new functional peptide composite materials with gold nanoparticles. Prot Met Phys Chem Surf 51:558–566. doi:10.1134/S207020511504022X

    Article  Google Scholar 

  • Marteel-Parrish AE, Abraham MA (2013) Green chemistry and engineering: a pathway to sustainability. Wiley, Hoboken

    Book  Google Scholar 

  • Metz B, Kersten GFA, Hoogerhout P, Brugghe HF, Timmermans HAM, de Jong A, Meiring H, ten Hove J, Hennink WE, Crommelin DJA, Jiskoot W (2004) Identification of formaldehyde-induced modifications in proteins reactions with model peptides. J Biol Chem 279:6235–6243. doi:10.1074/jbc.M310752200

    Article  Google Scholar 

  • Miyazawa T (1960) Normal vibrations of monosubstituted amides in the cis configuration and infrared spectra of diketopiperazine. J Mol Spectrosc 4:155–167. doi:10.1016/0022-2852(60)90075-8

    Article  Google Scholar 

  • Monti S, Alderighi M, Duce C, Solaro R, Tiné MR (2009) Adsorption of ionic peptides on inorganic supports. J Phys Chem C 113:2433–2442. doi:10.1021/jp809297c

    Article  Google Scholar 

  • Negishi Y, Tsukuda T (2003) One-pot preparation of subnanometer-sized gold clusters via reduction and stabilization by meso-2,3-dimercaptosuccinic acid. J Am Chem Soc 125:4046–4047. doi:10.1021/ja0297483

    Article  Google Scholar 

  • Philip B (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A 73:374–381. doi:10.1016/j.saa.2009.02.037

    Article  Google Scholar 

  • Polte J (2015) Fundamental growth principles of colloidal metal nanoparticles—a new perspective. CrystEngComm 17:6809–6830. doi:10.1039/C5CE01014D

    Article  Google Scholar 

  • Povarnina PY, Vorontsova ON, Gudasheva TA, Ostrovskaya RU, Seredenin SB (2013) Original nerve growth factor mimetic dipeptide GK-2 restores impaired cognitive functions in rat models of Alzheimer’s disease. Acta Nat 5:84–91

    Google Scholar 

  • Prokopovich P, Starov V (2011) Adhesion models: from single to multiple asperity contacts. Adv Colloid Interface Sci 168:210–222. doi:10.1016/i.cis.2011.03.004

    Article  Google Scholar 

  • Rimola A, Sodupe M, Ugliengo P (2009) Affinity scale for the interaction of amino acids with silica surfaces. J Phys Chem C 113:5741–5750. doi:10.1021/jp811193f

    Article  Google Scholar 

  • Rimola A, Costa D, Sodupe M, Lambert JF, Ugliengo P (2013) Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem Rev 113:4216–4313. doi:10.1021/cr3003054

    Article  Google Scholar 

  • Rusin M, Ewan BCR, Ristic RI (2013) The glycine-stimulated nucleation and solution-mediated polymorphic transformation of l-glutamic acid. CrystEngComm 15:2192–2196. doi:10.1039/C2CE26344K

    Article  Google Scholar 

  • Selvakannan PR, Mandal S, Phadtare S, Gole A, Pasricha R, Adyanthaya SD, Sastry M (2004) Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J Colloid Int Sci 269:97–102. doi:10.1016/S0021-9797(03)00616-7

    Article  Google Scholar 

  • Seredenin SB, Gudasheva TA (2011) Dipeptide mimetics of NGF and BDNF neurotrophins. Patent RUS № 2410392

  • Sun X, Dong S, Wang E (2006) One-step polyelectrolyte-based route to well-dispersed gold nanoparticles: synthesis and insight. Mat Chem Phys 96:29–33. doi:10.1016/j.matchemphys.2005.06.046

    Article  Google Scholar 

  • Urupina OY, Vysotskii VV, Loskutov AI, Cherkasova AV, Roldughin VI (2013) Formation of gold nanoparticles in aqueous solutions of cellulose derivatives and a study of the properties of these nanoparticles. Russian J Appl Chem 86:1268–1274. doi:10.1134/S1070427213080193

    Article  Google Scholar 

  • Venyaminov SYu, Kalnin NN (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers 30:1259–1271. doi:10.1002/bip.360301309

    Article  Google Scholar 

  • Walther A, Müller AHE (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113:5194–5261. doi:10.1021/cr300089t

    Article  Google Scholar 

  • Wang M, Braun HG, Meyer E (2004) Transition of crystal growth as a result of changing polymer states in ultrathin poly(ethylene oxide)/poly(methyl methacrylate) blend films with thickness of <3 nm. Macromolecules 37:437–445. doi:10.1021/ma0355812

    Article  Google Scholar 

  • Wu S, Yan S, Qi W, Huang R, Cui J, Su R, He Z (2015) Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction. Nanoscale Res Lett. doi:10.1186/s11671-015-0910-7

    Google Scholar 

  • Zakaria HM, Shah A, Konieczny M, Hoffmann JA, Nijdam AJ, Reevers ME (2013) Small molecule- and amino acid-induced aggregation of gold nanoparticles. Langmuir 29:7661–7673. doi:10.1021/la400582v

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Education and Science of the Russian Federation and by financial support from Russian Foundation for Basic Research, contract No. 15-07-01733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Loskutov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loskutov, A.I., Guskova, O.A., Grigoriev, S.N. et al. Influence of the synthesis conditions of gold nanoparticles on the structure and architectonics of dipeptide composites. J Nanopart Res 18, 239 (2016). https://doi.org/10.1007/s11051-016-3548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3548-1

Keywords

Navigation