Skip to main content
Log in

Nanoscale observation of morphological transformation during ageing of silica and silica-alumina

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM) was used for in-situ observation of nanoscale morphological transformations during the ageing step in sol-gel synthesis. Silica, alumina and silica-alumina samples with different Si/Al ratios were prepared from inorganic salt precursors and geled at low pH. Silica and silica-alumina samples formed branch-like gel network made of nanometer-sized clusters. During ageing at room temperature, the overall structure of the gel network remained unchanged but the clusters underwent phase transformation, coaslesence, coarsening, fragmentation, as well as dissolution resulting in the internal restructuring of the gel material. Morphological transformation associated with crystallization of pseudo-boehmite phase was observed for the alumina samples. These nanometer-scale processes are expected to play a key role in dictating the material properties of the final sol-gel product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shukla S, Seal S (2004) In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol. 10. American Scientific Publishers, Stevenson Ranch, p 27

    Google Scholar 

  2. Kim SH, Liu BYH, Zachariah MR (2004) Langmuir 20(7):2523

    Article  CAS  Google Scholar 

  3. Gonzalez RD, Arsenault S (2003) In: Lopez TM, Avnir D, Aegerter M (eds) Emerging fields in Sol-Gel science and technology. Kluwer Academic Publishers, Norwell, Mass, p 12

    Google Scholar 

  4. Li CL, Murase N (2004) Langmuir 20(1):1

    Article  CAS  Google Scholar 

  5. Wright JD, Sommerdijk NAJM (2001) Sol-gel materials, chemistry and applications. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  6. Dong H, Lee M, Thomas RD, Zhang Z, Reidy RF, Mueller DW (2003) J Sol-Gel Sci Tech 28(1):5

    Article  CAS  Google Scholar 

  7. Otero AC, Rodriguez DM, Montouillout V, Lavalley JC, Fernandez C, Cuart Pascual JJ, Parra JB (2004) Micro Meso Mater 67(2–3):259

    Google Scholar 

  8. Miao L, Tanemura S, Toh S, Kaneko K, Tanemura M (2004) J Cryst Growth 264(1–3):246

    Article  CAS  Google Scholar 

  9. Giakoumelou I, Parvulescu V, Boghosian S (2004) J Catal 225(2):337

    Article  CAS  Google Scholar 

  10. Innocenzi P, Brusatin G (2004) J Non-Crystal Solids 333(2):137

    Article  CAS  Google Scholar 

  11. Falcao AN, Sousa JS, Carrapico M, Margaca FMA, Carvalho FG, Salvado IMM, Teixeira J (2003) J Sol-Gel Sci Tech 26(1–3):345

    Article  CAS  Google Scholar 

  12. Kwon YK, Kim DH, Kim GJ, Han YS, Seong BS (2003) Stud Surf Sci Catal 146:355

    Article  CAS  Google Scholar 

  13. Brinker CJ Scherer GW (1990) Sol-gel science the physicals and chemistry of Sol-gel processing. Academic Press Inc., Harcourt Brace Jovanovich

    Google Scholar 

  14. Schatz C, Pichot C, Delair T, Viton C, Domard A (2003) Langmuir 19(23):9896

    Article  CAS  Google Scholar 

  15. Kaneko EY, Pulcinelli SH, da Silva VT, Santilli CV (2002) Appl Catal A 235(1–2):71

    Article  CAS  Google Scholar 

  16. Romer S, Urban C, Lobaskin V, Scheffold F, Stradner A, Kohlbrecher J, Schurtenberger PJ (2003) Appl Crystal 36(Part 1):1

    Article  CAS  Google Scholar 

  17. Dahmouche K, Carlos LD, Santilli CV, de Zea V, Bermudez, Craievich AF (2002) J Phys Chem B 106(17):4377

    Article  CAS  Google Scholar 

  18. Chaker JA, Dahmouche K, Santilli CV, Pulcinelli SH, Craievich A (2003) J Appl Crystal 36(Part 3 Sp. Iss. 1):689

    Article  CAS  Google Scholar 

  19. Bosc F, Ayral A, Albouy PA, Guizard C (2003) Chem Mater 15:12

    Article  CAS  Google Scholar 

  20. Miller JB, Ko EI (1998) Catal Today 43(1–2):51

    Article  CAS  Google Scholar 

  21. Maira AJ, Yeung KL, Lee CY, Yue PL, Chan CK (2000) J Catal 192(1):185

    Article  CAS  Google Scholar 

  22. Montoya JA, Romero-Pascual E, Gimon C, Del Angel PMA (2000) Catal Today 63(1):71

    Article  CAS  Google Scholar 

  23. Scott BJ, Wirnsberger G, Stucky GD (2001) Chem Mater 13(10):3140

    Article  CAS  Google Scholar 

  24. Moreno EM, Zayat M, Morales MP, Serna CJ, Roig A, Levy D (2002) Langmuir 18(12):4972

    Article  CAS  Google Scholar 

  25. Imhof A, Pine DJ (1997) Nature 389(6654):948

    Article  CAS  Google Scholar 

  26. Pierre AC, Pajonk GM (2002) Chem Rev 102:4243

    Article  CAS  Google Scholar 

  27. Zhang XF Zhang Z (1999) Progress in transmission electron microscopy. Tsinghua University Press & Springer-Verlag, Beijing

    Google Scholar 

  28. Cohen YS, Levi MD, Aurbach D (2003) Langmuir 19(23):9804

    Article  CAS  Google Scholar 

  29. Cai XW, Gao JS, Xie ZX, Xie Y, Tian ZQ, Mao BW (1998) Langmuir 14(9):2508

    Article  CAS  Google Scholar 

  30. Jiang Y, Jin XG, Han CC, Li L, Wang Y, Chan CM (2003) Langmuir 19(19):8010

    Article  CAS  Google Scholar 

  31. Li L, Chan CM, Li JX, Ng KM, Yeung KL, Weng LT (1999) Macromolecules 32(24):8240

    Article  CAS  Google Scholar 

  32. Li L, Chan CM, Yeung KL, Li JX, Ng KM, Lei YG (2001) Macromolecules 34(2):316

    Article  CAS  Google Scholar 

  33. Yao N, Xiong GX, Zhang YH, He MY, Yang WS (2001) Catal Today 68(1–3):97

    Article  CAS  Google Scholar 

  34. Yao N, Xiong GX, Yeung KL, Sheng SS, He MY, Yang WS, Liu XM, Bao XH (2002) Langmuir 18(10):4111

    Article  CAS  Google Scholar 

  35. Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  36. Bottero JY, Tchoubar D, Cases JM, Flessinger F (1982) J Phys Chem 86:3667

    Article  CAS  Google Scholar 

  37. Sinko K, Mezei R, Rohonczy J, Fratzl P (1999) Langmuir 15:6631

    Article  CAS  Google Scholar 

  38. Meakin P (1983) Phys Rev Let 51:1119

    Article  Google Scholar 

  39. Meakin P (1986) In: Stanley HE, Ostrowsky N (eds) On growth and form. Martinus-Nijhoff, Boston, p 111

    Google Scholar 

  40. Iler RK (1979) The chemistry of silicate, solubility, polymerization, colloid and surface properties, and biochemistry. A Wiley-Interscience Publication, John Wiley & Sons, New York

    Google Scholar 

  41. Hunter RJ (1981) Zeta potential in colloid science. Adademic Press, New York

    Google Scholar 

  42. Phair JW, Schulz JC, Aldridge LP, Smith JD (2004) J Amer Ceramic Soc 87(1):129

    Article  CAS  Google Scholar 

  43. Sugar I, Guba F (1954) Proceedings of 3rd international congress of electron microscope. Royal Microscopical Society, Lodon, p 530

    Google Scholar 

  44. Sinko K, Mezei R, Zrínyi M (2001) J Sol-gel Sci Tech 21:147

    Article  CAS  Google Scholar 

  45. Sinko K, Pöppl L (2002) J Solid State Chem 165:111

    Article  CAS  Google Scholar 

  46. Kanamori K, Nakanishi K, Hirao K, Jinnai H (2003) Langmuir 19:5581

    Article  CAS  Google Scholar 

  47. Scheafer DW, Keefer KD (1984) Phys Rev Lett 53(14):1383

    Article  Google Scholar 

  48. Vollet DR, Donatti DA, Ruiz AI (2001) J Non-Crystall, Solids 288:81

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, N., Yeung, K.L. & Xiong, G. Nanoscale observation of morphological transformation during ageing of silica and silica-alumina. J Sol-Gel Sci Technol 39, 139–150 (2006). https://doi.org/10.1007/s10971-006-7144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-7144-1

Keywords

Navigation