Skip to main content
Log in

Fluorescent porphyrins trapped in monolithic SiO2 gels

  • Original Article
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Macrocyclic molecules play key roles in basic processes in living organisms. Free bases and the metal complexes of porphyrins exhibit a wide range of important optical properties. In these systems the position of the most intense absorption band depends on the peripheral substituents of the macrocycle. Sol-gel methods have generally allowed the successful trapping of porphyrins into inorganic networks. The materials obtained are strong and transparent monolithic gels, but in the majority of cases the red fluorescence of the porphyrins disappears with ageing. We have evaluated the effect of the type and spatial disposition of the substituents in the porphyrin macrocycle periphery on key optical properties, with particular emphasis on the conservation of red fluorescence when porphyrins are simply trapped or covalently bonded to the inorganic matrix. Here, we report the use of the sol-gel procedures to obtain monolithic gels with the hydroxyl- or amino-substituted α, β, γ, δ-tetraphenylporphyrins, (H2T(S)PP), simply trapped or covalently bonded to the SiO2 matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.M. Smith, Porphyrins and Metalloporphyrins (Academic Press, New York, 1978).

    Google Scholar 

  2. T.H. Wei, D.J. Hagan, M.J. Sence, E.W. Stryland, and J.W. Perry, Appl. Phys. B54, 46 (1992).

    CAS  Google Scholar 

  3. Y. Liu, K. Shigehara, and A. Yamada, Bull. Chem. Soc. Jpn. 65, 250 (1992).

    CAS  Google Scholar 

  4. M. Gouterman, in D. Dolphin (Ed.) The Porphyrins, Physical Chemistry, Part A (Academic Press, New York, 1978).

    Google Scholar 

  5. C. Fierro, A.B. Anderson, and D.A. Scherson, J. Phys. Chem. 92, 6902 (1988).

    CAS  Google Scholar 

  6. H. Inoue, T. Iwamoto, A. Makishima, M. Ikemoto, and K. Horie, J. Opt. Soc. Am. B9(5), 816 (1992).

    Google Scholar 

  7. H. Tanaka, J. Takahashi, J. Tsuchiya, Y. Kobayashi, and Y. Kurokawa, J. Non-Cryst. Solids. 109, 164 (1989).

    CAS  Google Scholar 

  8. J. Friedrich, H. Wolfrum, and D. Haarer, J. Chem. Phys. 77, 2309 (1982).

    Article  CAS  Google Scholar 

  9. B. Ehrenberg, Z. Malik, and Y. Nitzan, Photochem. Photobiol. 41, 429 (1985).

    CAS  Google Scholar 

  10. G.G. Meng, B.R. James, K.A. Skov, and M. Korbelik, Can. J. Chem. 72, 2447 (1994).

    CAS  Google Scholar 

  11. E. Ben-Hur and B. Horowitz, Photochem. Photobiol. 62, 383 (1995).

    CAS  Google Scholar 

  12. T. Ben Amor, L. Bortolotto, and G. Jori, Photochem. Photobiol. 71, 124 (2000).

    CAS  Google Scholar 

  13. S. Salhi, M.-C. Vernières, C. Bied-Charreton, J. Faure, and A. Revillon, New J. Chem. 18, 783 (1994).

    CAS  Google Scholar 

  14. M.A. García-Sánchez, A. Campero, and M.L. Avilés C., J. Non-Cryst. Solids 351, 962 (2005).

  15. M.A. García-Sánchez and A. Campero, J. Non-Cryst. Solid 296, 50 (2001).

    Article  Google Scholar 

  16. D. Avnir, D. Levy, and R. Reisfield, J. Phys. Chem. 88, 5956 (1984).

    Article  CAS  Google Scholar 

  17. A. Makishima and T. Tani, J. Am. Ceram. Soc. 69, 4 (1986).

    Google Scholar 

  18. V.R. Kaufmann, D. Avnir, and R. Reisfield, J. Non-Cryst. Solids 99, 379 (1988)

    Google Scholar 

  19. J. Mckiernan, J.C. Pouxviel, B. Dunn, and J.I. Zink, J. Phys. Chem. 93, 2129 (1989).

    Article  CAS  Google Scholar 

  20. J. Fitremann, S. Doeuff, and C. Sanchez, Ann. Chim. Fr. 15, 421 (1990).

    CAS  Google Scholar 

  21. R. Litrán, E. Blanco, M. Ramírez-Del Solar, and L. Esquivias, J. Sol-Gel Sci. Technol. 8, 985 (1997).

    Google Scholar 

  22. A. Bronshtein, N. Aharonson, D. Avnir, A. Turniansky, and M. Altstein, Chem. Mater. 9, 2632 (1997).

    Article  CAS  Google Scholar 

  23. P.D. Fuqua, B. Dunn, and J.I. Zink, J. Sol-Gel Sci. Technol. 11, 241 (1998).

    Article  CAS  Google Scholar 

  24. M.A. García-Sánchez and A. Campero, J. Sol-Gel Sci. Technol. 13, 651 (1998).

    Google Scholar 

  25. K. Kamitani, M. Uo, and H. Inoue, A. Makishima, J. Sol-Gel Sci. Technol. 1(85), 85 (1993).

    CAS  Google Scholar 

  26. X.-J. Wang, L.M. Yates III, and E.T. Knobbe, J. Luminescence 60&61, 469 (1994).

    Google Scholar 

  27. H.M. Sung-Suh and Z. Tani, J. Phys. Chem. B, 101 (1997).

    Google Scholar 

  28. M.A. García-Sánchez and A. Campero, J. Non-Cryst. Solid 333, 226 (2004).

    Google Scholar 

  29. A.D. Adler, F.R. Logo, J.D. Finarelli, and J. Goldmacher, J. Assour, J. Org. Chem. 32, 476 (1967).

    Article  CAS  Google Scholar 

  30. M. Mamenteau, J. Mispelter, and B. Loock, J.-M. J. Chem Soc., Perkin Trans. I, 221 (1985).

    Google Scholar 

  31. A. Stern and H. Wenderlein, Z. Physik. Chem. A175, 405 (1936).

    CAS  Google Scholar 

  32. G.D. Doroug, J.R. Miller, and F.M. Huennekens, J. Am. Chem. Soc. 73, 4315 (1951).

    Google Scholar 

  33. A. Stone and E.B. Fleischer, J. Am. Chem. Soc. 90, 2735 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. García Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García Sánchez, M.A., Tello S, S.R., Sosa F, R. et al. Fluorescent porphyrins trapped in monolithic SiO2 gels. J Sol-Gel Sci Technol 37, 93–97 (2006). https://doi.org/10.1007/s10971-006-6425-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-6425-z

Keywords

Navigation