Skip to main content

Entrapment of Organic Molecules

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Mild conditions of the sol–gel process for preparing inorganic oxides at ambient temperature enable one to form organic molecule-doped inorganic materials that cannot be obtained by the conventional high temperature processes. The doped sol–gel glasses are stable thermally, chemically, and photochemically and transparent well into the UV, especially when compared to plastics matrices. The encapsulated molecules are well protected much better than in plastics. Encapsulation of organic molecules in sol–gel glasses has extended in various fields such as photonic materials, sensors, organic/inorganic hybrids, template synthesis of organized matter, biochemical–inorganic composites, and so on. The subject of this chapter is to review the progress of dye-doped sol–gel glasses, especially molecular probes of sol–gel materials and interactions between organic molecules and sol–gel matrices. Molecular probes are sensitive methods to monitor the microenvironment on the molecular scales by using spectroscopic techniques, e.g., luminescence, absorption, and ESR. The molecule–matrix interactions are examined also by such methods during the sol–gel–xerogel transitions. This chapter shows typical examples of the organic molecule-doped sol–gel glass systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akbarian F, Dunn BS, Zink JI. Chemiluminescent silicate and aluminosilicate sol–gel glasses. J Mater Chem. 1993;3:1041–4.

    Article  Google Scholar 

  • Anderson C, Bard AJ. An improved photocatalyst of TiO2/SiO2 prepared by a sol–gel synthesis. J Phys Chem. 1995;99:9882–5 .Additions and corrections: J Phys Chem. 1995;99:17963

    Article  Google Scholar 

  • Avnir D. Organic chemistry within ceramic matrices: doped sol–gel materials. Acc Chem Res. 1995;28:328–34.

    Article  Google Scholar 

  • Avnir D, Levy D, Reisfeld R. The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6G. J Phys Chem. 1984;88:5956–9.

    Article  Google Scholar 

  • Avnir D, Kaufman VR, Reisfeld R. Organic fluorescent dyes trapped in silica and silica–titania thin films by the sol–gel method. Photophysical, film and cage properties. J Non-Cryst Solids. 1985;74:395–406.

    Article  Google Scholar 

  • Avnir D, Braun S, Ottolenghi M. Encapsulation of organic molecules and enzymes in sol–gel glasses. In: Bein T, editor. Supramolecular architecture: synthesis control in thin films and solids, ACS symposium series, vol. 499. Washington, DC: American Chemical Society; 1992. p. 384–404.

    Google Scholar 

  • Avnir D, Braun S, Lev O, Ottolenghi M. Enzymes and other proteins entrapped in sol–gel materials. Chem Mater. 1994;6:1605–14.

    Article  Google Scholar 

  • Badjić JD, Kostić NM. Unexpected interaction between sol–gel silica glass and guest molecules. Extraction of aromatic hydrocarbons into polar silica from hydrophobic solvents. J Phys Chem B. 2000;104:11081–7.

    Article  Google Scholar 

  • Badjić JD, Kostić NM. Reactivity of organic compounds inside micelles embedded in sol–gel glass. Kinetics of isomerization of azobenzene inside CTAB and SDS micelles embedded in silica matrix. J Phys Chem B. 2001;105:7482–9.

    Article  Google Scholar 

  • Baker GA, Jordan JD, Bright FV. Effects of poly(ethylene glycol) doping on the behavior of pyrene, rhodamine 6G, and acrylodan-labeled bovine serum albumin sequestered within tetramethylorthosilane-derived sol–gel-processed composites. J Sol–Gel Sci Tech. 1998;11:43–54.

    Article  Google Scholar 

  • Bardo AM, Collinson MM, Higgins DA. Nanoscale properties and matrix–dopant interactions in dye-doped organically modified silicate thin films. Chem Mater. 2001;13:2713–21.

    Article  Google Scholar 

  • Bauer RK, de Mayo P, Ware WR, Wu KC. Surface photochemistry. The photophysics of pyrene adsorbed on silica gel, alumina and calcium fluoride. J Phys Chem. 1982;86:3781–9.

    Article  Google Scholar 

  • Biteau J, Chaput F, Boilot J-P. Photochromism of spirooxazine-doped gels. J Phys Chem. 1996;100:9024–31.

    Article  Google Scholar 

  • Biteau J, Chaput F, Yokoyama Y, Boilot J-P. Photochromism of an indolylfulgide trapped in a hybrid sol–gel matrix. Chem Lett. 1998;27:359–60.

    Article  Google Scholar 

  • Brennan JD, Hartman JS, Ilnicki EI, Rakic M. Fluorescence and NMR characterization and biomolecule entrapment studies of sol–gel-derived organic–inorganic composite materials formed by sonication of precursors. Chem Mater. 1999;11:1853–64.

    Article  Google Scholar 

  • Carturan S, Quaranta A, Maggioni G, Vomiero A, Ceccato R, Della MG. Optical study of the matrix effect on the ESIPT mechanism of 3-HF doped sol–gel glass. J Sol–Gel Sci Tech. 2003;26:931–5.

    Article  Google Scholar 

  • Castellano FN, Meyer GJ. Dynamic electron transfer in aquo- and alco-SiO2 gels. J Phys Chem. 1995;99:14742–8.

    Article  Google Scholar 

  • Castellano FN, Heimer TA, Tandhasetti MT, Meyer GJ. Photophysical properties of ruthenium polypyridyl photonic SiO2 gels. Chem Mater. 1994;6:1041–8.

    Article  Google Scholar 

  • Chambers RC, Haruvy Y, Fox MA. Excited state dynamics in the structural characterization of solid alkyltrimethoxysilane-derived sol–gel films and glasses containing bound or unbound chromophores. Chem Mater. 1994;6:1351–7.

    Article  Google Scholar 

  • Ciriminna R, Blum J, Avnir D, Pagliaro M. Sol–gel entrapped TEMPO for the selective oxidation of methyl α-d-glucopyranoside. Chem Commun. 2000;1441–2.

    Google Scholar 

  • Coltrain BK, Sanchez C, Schaefer DW, Wilkes GL, editors. Better ceramics through chemistry VII, Material Research Society symposium, vol. 435. Warrendale: Materials Research Society; 1996.

    Google Scholar 

  • Dai S, Sigman ME, Burch EL. Preparation of a photochromic glass doped with methylviologen radical cation via a sol–gel process. Chem Mater. 1995;7:2054–7.

    Article  Google Scholar 

  • del Monte F, Levy D. Formation of fluorescent rhodamine B J-dimers in sol–gel glasses induced by the adsorption geometry on the silica surface. J Phys Chem B. 1998;102:8036–41.

    Article  Google Scholar 

  • Dunn B, Zink JI. Probes of pore environment and molecule–matrix interactions in sol–gel materials. Chem Mater. 1997;9:2280–91.

    Article  Google Scholar 

  • Dunn B, Mackenzie JD, Zink JI, Stafsudd OM. Solid-state tunable lasers based on dye-doped sol–gel materials. Proc SPIE Int Soc Opt Eng. 1990;1328:174–82.

    Google Scholar 

  • EL Mekkawi D, Abdel-Mottaleb MSA. The interaction and photostability of some xanthenes and selected azo sensitizing dyes with TiO2 nanoparticles. Int J Photogr. 2005;7:95–101.

    Article  Google Scholar 

  • Ferrer ML, del Monte F. Study of the adsorption process of sulforhodamine B on the internal surface of porous sol–gel silica glasses through fluorescence means. Langmuir. 2003;19:650–3.

    Article  Google Scholar 

  • Ferrer M, Lianos P. Study of silica-surfactant composite films with fluorescent probes. Langmuir. 1996;12:5620–4.

    Article  Google Scholar 

  • Fujii T. Fluorescence spectra of aromatic molecules during the sol–gel transition of metal alkoxides. Trends Photochem Photobiol. 1994;3:243–60.

    Google Scholar 

  • Fujii T, Mabuchi T, Mitsui I. Fluorescence spectra of naphthols during sol to gel transition of tetraethoxy silane by HCl catalyst. Chem Phys Lett. 1990;168:5–8.

    Article  Google Scholar 

  • Fujii T, Mabuchi T, Kitamura H, Kawauchi O, Negishi N, Anpo M. Fluorescence spectra of 1-naphthol during the sol–gel process of a mixed aluminum–silicon alkoxide (Si:Al = 94:6). Bull Chem Soc Jpn. 1992;65:720–7.

    Article  Google Scholar 

  • Fujii T, Murayama K, Negishi N, Anpo M, Winder EJ, Neu DR, Ellis AB. Fluorescence spectra of pyrene and humidity effects on them during the sol–to-gel-to-xerogel transitions of mixed silicon–aluminum alkoxide systems. Bull Chem Soc Jpn. 1993;66:739–47.

    Article  Google Scholar 

  • Fujii T, Mishima S, Kawauchi O. Effects of Si–Al composition on the fluorescence spectra of 1-naphthol during the sol–gel–xerogel transitions. Res Chem Intermed. 1997a;23:143–54.

    Article  Google Scholar 

  • Fujii T, Kodaira K, Kawauchi O, Tanaka N, Yamashita H, Anpo M. Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si–Al glasses prepared by the sol–gel method. J Phys Chem B. 1997b;101:10631–7.

    Article  Google Scholar 

  • Fujii T, Isowaki Y, Nomoto T, Tanaka N, Mishima S. Enhancement of charge-transfer complex formation between 1,4-dimethyl-naphthalene and p-chloranil during the sol–gel reaction of tetraethyl orthosilicate. Chem Phys Lett. 1998;287:725–30.

    Article  Google Scholar 

  • Galow TH, Fuller N, Cohen CT, Thibault RJ, Rotello VM. Flavin mononucleotide as a probe for dopant encapsulation in sol–gel silicates. Langmuir. 2002;18:9149–52.

    Article  Google Scholar 

  • Gvishi R, Narang U, Bright FV, Prasad PN. Probing the microenvironment of polymer-impregnated composite glass using solvatochromic dye. Chem Mater. 1995;7:1703–8.

    Article  Google Scholar 

  • Hamerton I, Hay JN, Jones JR, Lu S-Y. Covalent incorporation of 2,5-diphenyloxazole in sol–gel matrices and their application in radioanalytical chemistry. Chem Mater. 2000;12:568–72.

    Article  Google Scholar 

  • He Z, Kispert LD. Carotenoids in sol–gels: incorporation, stability, and sensitivity to oxidant and acid. Chem Mater. 2001;13:227–31.

    Article  Google Scholar 

  • Hilgendorff M, Sundström V. Dynamics of electron injection and recombination of dye-sensitized TiO2 particles. J Phys Chem B. 1998;102:10505–14.

    Article  Google Scholar 

  • Ikoma S, Kawakita K, Yokoi H. Characterization of polyamine copper(II) complex-doped alumina gels prepared by the sol–gel technique. J Non-Cryst Solids. 1990;122:183–92.

    Article  Google Scholar 

  • Ilharco LM, Santos AM, Silva MJ, Martinho JMG. Intramolecular pyrene excimer in probing the sol–gel process. Langmuir. 1995;11:2419–22.

    Article  Google Scholar 

  • Innocenzi P, Kozuka H, Yoko T. Dimer-to-monomer transformation of rhodamine 6G in sol–gel silica films. J Non-Cryst Solids. 1996;201:26–36.

    Article  Google Scholar 

  • Innocenzi P, Kozuka H, Yoko T. Fluorescence properties of Ru(bpy)3 2+ complex incorporated in sol–gel-derived silica coating films. J Phys Chem B. 1997;101:2285–91.

    Article  Google Scholar 

  • Inoue H, Iwamoto T, Makishima A, Ikemoto M, Rorie K. Preparation and properties of sol–gel thin films with porphins. J Opt Soc Am. 1992;B9:816–8.

    Article  Google Scholar 

  • Ita M, Uchida Y, Matsui K. Polyaniline/silica hybrid composite gels prepared by the sol–gel process. J Sol–Gel Sci Tech. 2003;26:479–82.

    Article  Google Scholar 

  • Itoh K, Kimizuka T, Matsui K. ESR study of a nitroxide radical in silica and titania prepared by the sol–gel process. Anal Sci. 2001;17(Suppl):i1157–60.

    Google Scholar 

  • Kalyanasundaram K. Photochemsitry of polypyridine and porphyrin complexes. London: Academic; 1992.

    Google Scholar 

  • Kalyanasundaram K, Thomas JK. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc. 1977;99:2039–44.

    Article  Google Scholar 

  • Kamitani K, Uo M, Inoue H, Makishima A. Synthesis and spectroscopy of TPPS-doped silica gels by the sol–gel process. J Sol–Gel Sci Tech. 1993;1:85–92.

    Article  Google Scholar 

  • Kaufman VR, Avnir D. Structural changes along the sol–gel–xerogel transition in silica as probed by pyrene excited-state emission. Langmuir. 1986;2:717–22.

    Article  Google Scholar 

  • Kaufman VR, Levy D, Avnir D. A Photophysical study of the sol/gel transition in silica: structural dynamics and oscillations, room-temperature phosphorescence and photochromic gel glasses. J Non-Cryst Solids. 1986;82:103–9.

    Article  Google Scholar 

  • Kaufman VR, Avnir D, Pines-Rojanski D, Huppert D. Water consumption during the early stages of the sol–gel tetramethylorthosilicate polymerization as probed by excited state proton transfer. J Non-Cryst Solids. 1988;99:379–86.

    Article  Google Scholar 

  • Kawashima M, Matsui K. Tumbling motion of V4+ ions in silica gels influenced by the adsorbed water. J Ceram Soc Jpn. 1999;107:282–4.

    Article  Google Scholar 

  • Kemnitz K, Yoshihara K. Entropy-driven dimerization of xanthene dyes in nonpolar solution and temperature-dependent fluorescence decay of dimers. J Phys Chem. 1991;95:6095–104.

    Article  Google Scholar 

  • Kitamura T, Takahashi Y, Yamanaka T, Uchida K. Luminescence associated with the molecular aggregation of hydrocarbons doped in amorphous silica glasses. J Lumin. 1991;48/49:373–6.

    Article  Google Scholar 

  • Knobbe ET, Dunn B, Fuqua PD, Nishida F. Laser behavior and photostability characteristics of organic dye doped silicate gel materials. Appl Opt. 1990;29:2729–33.

    Article  Google Scholar 

  • Kobayashi Y, Kurokawa Y, Imai Y, Muto S. A transparent alumina film doped with laser dye and its emission properties. J Non-Cryst Solids. 1988;105:198–200.

    Article  Google Scholar 

  • Kobayashi Y, Sasaki H, Muto S, Yamazaki S, Kurokawa Y. Preparation of a transparent alumina film doped with fluorescence dye and its energy transfer laser emission. Thin Solid Films. 1991;200:321–7.

    Article  Google Scholar 

  • Lev O. Diagnostic applications of organically doped sol–gel porous glass. Analusis. 1992;20:543–53.

    Google Scholar 

  • Levy D. Photochromic sol–gel materials. Chem Mater. 1997;9:2666–70.

    Article  Google Scholar 

  • Levy D, Avnir D. Effects of the changes in the properties of silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans. J Phys Chem. 1988;92:4734–8.

    Article  Google Scholar 

  • Levy D, Avnir D. Room temperature phosphorescence and delayed fluorescence of organic molecules trapped in silica sol–gel glasses. J Photochem Photobiol A Chem. 1991;57:41–63.

    Article  Google Scholar 

  • Levy D, Einhorn S, Avnir D. Applications of the sol–gel process for the preparation of photochromic information-recording materials: synthesis, properties, mechanisms. J Non-Cryst Solids. 1989;113:137–45.

    Article  Google Scholar 

  • Lobnik A, Wolfbeis OS. Probing the polarity of sol–gels and ormosils via the absorption of Nile Red. J Sol–Gel Sci Tech. 2001;20:303–11.

    Article  Google Scholar 

  • Locher R, Renn A, Wild UP. Hole-burning spectroscopy on organic molecules in amorphous silica. Chem Phys Lett. 1987;138:405–9.

    Article  Google Scholar 

  • Loy DA, Shea KJ. Bridged polysilsesquioxanes. Highly porous hybrid organic–inorganic materials. Chem Rev. 1995;95:1431–42.

    Article  Google Scholar 

  • Mann S, Burkett SL, Davis SA, Fowler CE, Mendelson NH, Sims SD, Walsh D, Whilton NT. Sol–gel synthesis of organized matter. Chem Mater. 1997;9:2300–10.

    Article  Google Scholar 

  • Matsui K. Complex formation between pyrene and, β-cyclodextrin in sol–gel glasses. Langmuir. 1992;8:673–5.

    Article  Google Scholar 

  • Matsui K, Momose F. Luminescence properties of tris(2,2′-bipyridine)ruthenium(II) in sol–gel systems of SiO2. Chem Mater. 1997;9:2588–91.

    Article  Google Scholar 

  • Matsui K, Nakazawa T. Fluorescence probes of pyrene and pyrene-3-carboxaldehyde for the sol–gel process. Bull Chem Soc Jpn. 1990;63:11–6.

    Article  Google Scholar 

  • Matsui K, Nozawa K. Molecular probing for the microenvironment of photonics materials prepared by the sol–gel process. Bull Chem Soc Jpn. 1997;70:2331–5.

    Article  Google Scholar 

  • Matsui K, Usuki N. Excimer fluorescence of pyrene in sol–gel silica. Bull Chem Soc Jpn. 1990;63:3516–20.

    Article  Google Scholar 

  • Matsui K, Matsuzuka T, Fujita H. Fluorescence spectra of 7-azaindole in the sol–gel–xerogel stages of silica. J Phys Chem. 1989a;93:4991–4.

    Article  Google Scholar 

  • Matsui K, Morohoshi T, Yoshida S. Photochromism of spiropyran in sol–gel glass and plasma-polymerized films. Proc MRS Int Meeting Adv Mater. 1989b;12:203–8.

    Google Scholar 

  • Matsui K, Nakazawa T, Morisaki H. Micellar formation of sodium dodecyl sulfate in sol–gel glasses probed by pyrene fluorescence. J Phys Chem. 1991a;95:976–9.

    Article  Google Scholar 

  • Matsui K, Sasaki K, Takahashi N. Luminescence of tris(2,2′-bipyridine)ruthenium(II) in sol–gel glasses. Langmuir. 1991b;7:2866–8.

    Article  Google Scholar 

  • Matsui K, Tominaga M, Arai Y, Satoh H, Kyoto M. Fluorescence of pyrene in sol–gel silica derived from triethoxysilane. J Non-Cryst Solids. 1994;169:295–300.

    Article  Google Scholar 

  • Matsui K, Motegi M, Ito K. ESR studies of UV-irradiated silica gels containing a functional group at silicon. Nucl Instrum Methods Phys Res B. 1996;116:253–6.

    Article  Google Scholar 

  • Matsui K, Kaneko T, Yaginuma Y, Ryu M. ESR study of a nitroxide radical in sol–gel glasses. J Sol–Gel Sci Tech. 1997;9:273–7.

    Google Scholar 

  • Matsui K, Yamamoto T, Goto T, Nozawa K, Bessho K. Fluorescence and infrared spectra of phenyl-modified silica gels prepared by the sol–gel process. J Chem Soc Jpn. 1998;489–94.

    Google Scholar 

  • Matsui K, Nozawa K, Yoshida T. Phosphorescence of benzophenone in sol–gel silica. Bull Chem Soc Jpn. 1999;72:591–6.

    Article  Google Scholar 

  • McEvoy AK, McDonagh C, MacCraith BD. Optimization of sol–gel-derived silica films for optical oxygen sensing. J Sol–Gel Sci Tech. 1997;8:1121–5.

    Google Scholar 

  • McKiernan J, Pouxviel J-C, Dunn B, Zink JI. Rigidochromism as a probe of gelation and densification of silicon and mixed aluminum–silicon alkoxides. J Phys Chem. 1989;93:2129–33.

    Article  Google Scholar 

  • Mei E, Bardo AM, Collinson MM, Higgins DA. Single-molecule studies of sol–gel-derived silicate films. Microenvironments and film-drying conditions. J Phys Chem B. 2000;104:9973–80.

    Article  Google Scholar 

  • Modes S, Lianos P. Structural study of silicate glasses by luminescence probing: the nature of small semiconductor particles formed in glasses. Chem Phys Lett. 1988;153:351–6.

    Article  Google Scholar 

  • Momose F, Matsunaga K, Matsui K, Semura S, Kyoto M, Shida A. Photophysical and photo-chemical properties of Ru(bpy)3 2+ in Si–Ti mixed oxides xerogels prepared by the sol–gel process. J Sol–Gel Sci Tech. 2002;23:79–83.

    Article  Google Scholar 

  • Nakajima A. Solvent effect on the vibrational structures of the fluorescence and absorption spectra of pyrene. Bull Chem Soc Jpn. 1971;44:3272–7.

    Article  Google Scholar 

  • Narang U, Bright FV. Conformational flexibility of 1,3-bis(l-pyrenyl)propane throughout the sol–gel to xerogel process. Chem Mater. 1996;8:1410–4.

    Article  Google Scholar 

  • Narang U, Wang R, Prasad PN, Bright FV. Effects of aging on the dynamics of rhodamine 6G in tetramethyl orthosilicate-derived sol–gels. J Phys Chem. 1994a;98:17–22.

    Article  Google Scholar 

  • Narang U, Jordan JD, Bright FV, Prasad PN. Probing the cybotactic region of PRODAN in tetramethyl orthosilicate-derived sol–gels. J Phys Chem. 1994b;98:8101–7.

    Article  Google Scholar 

  • Negishi N, Fujii T, Anpo M. Characteristics of the fluorescence spectra of pyrene molecules during the sol to gel to xerogel transitions of silica–titania binary oxide systems. Langmuir. 1993;9:3320–3.

    Article  Google Scholar 

  • Negishi N, Fujino M, Yamashita H, Fox MA, Anpo M. Photophysical properties and photo-chemical stability of rhodamine B encapsulated in SiO2 and Si–Ti binary oxide matrices by the sol–gel method. Langmuir. 1994;10:1772–6.

    Article  Google Scholar 

  • Nishida F, McKiernan JM, Dunn B, Zink JI, Brinker CJ, Hurd AJ. In situ fluorescence probing of the chemical changes during sol–gel thin film formation. J Am Ceram Soc. 1995;78:1640–8.

    Article  Google Scholar 

  • Nishikiori H, Fujii T. Molecular forms of rhodamine Bin dip-coated thin films. J Phys Chem B. 1997;101:3680–7.

    Article  Google Scholar 

  • Nishikiori H, Tanaka N, Fujii T. Influence of water on molecular forms of rhodamine B in dip-coated thin films. Res Chem Intermed. 2000;26:469–82.

    Article  Google Scholar 

  • Nishikiori H, Tanaka N, Takagi K, Fujii T. Chelation of spironaphthoxazine with zinc ions during the sol–gel–xerogel transitions in silicon alkoxide systems. J Photochem Photobiol A Chem. 2006a;183:53–8.

    Article  Google Scholar 

  • Nishikiori H, Tanaka N, Kitsui T, Fujii T. Photocurrent observed in dye-doped titania gel. J Photochem Photobiol A Chem. 2006b;179:125–9.

    Article  Google Scholar 

  • Nishikiori H, Tanaka N, Takagi K, Fujii T. Chelation of spironaphthoxazine with zinc ions and its photochromic behavior during the sol–gel–xerogel transitions of alkyl silicon alkoxide. J Photochem Photobiol A Chem. 2007a;189:46–54.

    Article  Google Scholar 

  • Nishikiori H, Qian W, El-Sayed MA, Tanaka N, Fujii T. Change in titania structure from amorphousness to crystalline increasing photoinduced electron-transfer rate in dye-titania system. J Phys Chem C. 2007b;111:9008–11.

    Article  Google Scholar 

  • Nishikiori H, Uesugi Y, Takami S, Setiawan RA, Fujii T, Qian W, El-Sayed MA. Influence of steam treatment on dye-titania complex formation and photoelectric conversion property of dye-doped titania gel. J Phys Chem C. 2011;115:2880–7.

    Article  Google Scholar 

  • Nishikiori H, Uesugi Y, Setiawan RA, Fujii T, Qian W, El-Sayed MA. Photoelectric conversion properties of dye-sensitized solar cells using dye-dispersing titania. J Phys Chem C. 2012;116:4848–54.

    Article  Google Scholar 

  • Nishikiori H, Setiawan RA, Miyashita K, Teshima K, Fujii T. Influence of dye dispersion on photoelectric conversion properties of dye-containing titania electrodes. Catal Sci Technol. 2013a;3:1512–9.

    Article  Google Scholar 

  • Nishikiori H, Setiawan RA, Kawamoto S, Takagi S, Teshima K, Fujii T. Dimerization of xanthene dyes in sol–gel titania films. Catal Sci Technol. 2013b;3:2786–92.

    Article  Google Scholar 

  • Pouxviel JC, Dunn B, Zink JI. Fluorescence study of aluminosilicate sols and gels doped with hydroxyl trisulfonated pyrene. J Phys Chem. 1989a;93:2134–9.

    Article  Google Scholar 

  • Pouxviel JC, Parvaneh S, Knobbe ET, Dunn B. Interactions between organic dyes and sol–gel matrices. Solid State Ionics. 1989b;32/33:646–54.

    Article  Google Scholar 

  • Premkumar JR, Sagi E, Rozen R, Belkin S, Modestov AD, Lev O. Fluorescent bacteria encapsulated in sol–gel derived silicate films. Chem Mater. 2002;14:2676–86.

    Article  Google Scholar 

  • Preston D, Pouxviel J-C, Novinson T, Kaska WC, Dunn B, Zink JI. Photochromism of spiropyrans in aluminosilicate gels. J Phys Chem. 1990;94:4167–72.

    Article  Google Scholar 

  • Ramakrishna G, Ghosh HN. Emission from the charge transfer state of xanthene dye-sensitized TiO2 nanoparticles: a new approach to determining back electron transfer rate and verifying the Marcus inverted regime. J Phys Chem B. 2001;105:7000–8.

    Article  Google Scholar 

  • Reichardt C. Solvatochromic dyes as solvent polarity indicators. Chem Rev. 1994;94:2319–58.

    Article  Google Scholar 

  • Reisfeld R. Laser based on sol–gel technology. In: Jorgensen CK, Reisfeld R, editors. Structure and bonding, vol. 85. Berlin: Springer; 1996.

    Google Scholar 

  • Rottman C, Ottolenghi M, Zusman R, Lev O, Smith M, Gong G, Kagan ML, Avnir D. Doped sol–gel glasses as pH sensors. Mater Lett. 1992;13:293–8.

    Article  Google Scholar 

  • Rottman C, Grader GS, Hazan YD, Avnir D. Sol–gel entrapment of E r(30) in ormosils. Interfacial polarity-fractality correlation. Langmuir. 1996;12:5505–8.

    Article  Google Scholar 

  • Samuel J, Polevaya Y, Ottolenghi M, Avnir D. Determination of activation energy of entrance into micropores: quenching of the fluorescence of pyrene-doped SiO2 sol–gel matrices by oxygen. Chem Mater. 1994;6:1457–61.

    Article  Google Scholar 

  • Setiawan RA, Nishikiori H, Uesugi Y, Miyashita K, El-Sayed MA, Fujii T. Electron Transfer process in fluorescein-dispersing titania gel films observed by time-resolved fluorescence spectroscopy. J Phys Chem C. 2013;117:10308–14.

    Article  Google Scholar 

  • Setiawan RA, Nishikiori H, Tanaka N, Fujii T. Influence of dye content on the conduction band edge of titania in the steam-treated dye-dispersing titania electrodes. Photochem Photobiol. 2014;90:1004–11.

    Google Scholar 

  • Shames A, Lev O, Iosefzon-Kuyavskaya B. Study of sol–gel glass formation and properties by paramagnetic probes. J Non-Cryst Solids. 1993;163:105–14.

    Article  Google Scholar 

  • Shames A, Lev O, Iosefzon-Kuyavskaya B. In site EPR study of sol–gel processes. J Non-Cryst Solids. 1994;175:14–20.

    Article  Google Scholar 

  • Slama-Schwok A, Avnir D, Ottolenghi M. Photoinduced charge separation across the solid–liquid interface of porous sol–gel glasses: catalyzed hydrogen generation from water. J Phys Chem. 1989;93:7544–7.

    Article  Google Scholar 

  • Slama-Schwok A, Ottolenghi M, Avnir D. Long-lived photoinduced charge separation in a redox system trapped in a sol–gel glass. Nature. 1992;355:240–1.

    Article  Google Scholar 

  • Stipkala JM, Castellano FN, Heimer TA, Kelly CA, Livi KJT, Meyer GJ. Light-induced charge separation at sensitized sol–gel processed semiconductors. Chem Mater. 1997;9:2341–53.

    Google Scholar 

  • Takahashi Y, Yamanaka T, Uchida K. Time-resolved fluorescence spectra and energy migration of rhodamine B doped in amorphous silica glasses. J Lumin. 1994;62:299–303.

    Article  Google Scholar 

  • Tanaka H, Takahashi J, Tsuchiya J, Kobayashi Y, Kurokawa Y. The high dispersion of organic dye into a transparent alumina film and its applications to photochemical and non-photochemical hole burnings. J Non-Cryst Solids. 1989;109:164–70.

    Article  Google Scholar 

  • Tani T, Namikawa H, Arai K, Makishima A. Photochemical hole-burning study of 1,4-dihydroxyanthraquinone doped in amorphous silica prepared by alcolate method. J Appl Phys. 1985;58:3559–65.

    Article  Google Scholar 

  • Uchida Y, Baba H, Nakamura Y, Matsui K. Spectroscopic characterization of sol–gel silica derived from 3-aminopropyl-triethoxysilane. Trans Mater Res Soc Jpn. 2002;27:771–4.

    Google Scholar 

  • Ueda M, Kim H-B, Ikeda T, Ichimura K. Photoisomerizability of an azobenzene covalently attached to silica-gel matrix. J Non-Cryst Solids. 1993;163:125–32.

    Article  Google Scholar 

  • Ueda M, Kim H-B, Ichimura K. Photochemical and thermal isomerization of azobenzene derivatives in sol–gel bulk materials. Chem Mater. 1994;6:1771–5.

    Article  Google Scholar 

  • Wei Y, Jin D, Ding T. Optical rotatory silica materials prepared via sol–gel processes. J Phys Chem B. 1997;101:3318–23.

    Article  Google Scholar 

  • Wolfbeis OS, Reisfeld R, Oehme I. Sol–gels and chemical sensors. In: Jørgensen CK, Reisfeld R, editors. Structure and bonding, vol. 85. Berlin: Springer; 1996.

    Google Scholar 

  • Yamanaka T, Takahashi Y, Kitamura T, Uchida K. Excimer formation of hydrocarbons doped in amorphous silica glasses. J Lumin. 1991;48/49:265–8.

    Article  Google Scholar 

  • Yanagisawa K, Ovenstone J. Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature. J Phys Chem B. 1999;103:7781–7.

    Article  Google Scholar 

  • Zaitoun MA, Lin CT. Chelating behavior between metal ions and EDTAin sol–gel matrix. J Phys Chem B. 1997;101:1857–60.

    Article  Google Scholar 

  • Zink JI, Dunn BS. Photonic materials by the sol–gel process. J Ceram Soc Jpn. 1991;99:878–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromasa Nishikiori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Matsui, K., Nishikiori, H., Fujii, T. (2016). Entrapment of Organic Molecules. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics