Skip to main content
Log in

Gas-Phase Silicon Alkoxide Reactivity vs. Na-Alginate Droplets for Conjugation of Alginate and Sol-Gel Technologies

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Solutions with Na-alginate concentrations ranging from 0.5 to 2.5% w/v are processed to prepare Ca-alginate beads using a nozzle ejector under constant He-flow. Beads were spherical in shape and their size distributions were determined; in all samples the average diameter fell in the 120–140 μm interval. Volumetric yields were found to be linearly dependent of the original Na-alginate load whereas the bead diameters were almost constant, according to a constant hindrance of Ca-alginate macromolecular units in the final Ca-alginate gel. The rheology of Na-alginate solutions was studied, with determination of intrinsic viscosity; experimental evidence of microsphere formation, even at the lowest Na-alginate concentrations, indicated that ejection processing changes the rheological parameters controlling bead formation in ordinary dropping processing.

Gaseous silicon alkoxides – Si(OEt)4 and MeSi(OEt)3 – carried by a He flow were deposited on Na-alginate droplets during ejection. The process was studied by continuous mass spectrometry analysis before and after Na-alginate ejection during the 5-min treatment; in all cases results indicated a deposition yield of 58%. Traces of alcohol in the mass spectrometry analysis of the out-flow gas excluded instantaneous formation of sol-gel silica on the Na-alginate droplets during their residence in the gas phase. For various Na-alginate concentrations, ethanol released by silica gel formation is constant as well as the amount of deposited SiO2; a siliceous layer ranging from 0.08 to 0.17 μm thick on the surface of the Ca-alginate beads was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) H. Schmidt, H. Scholze, and A. Kaiser, J. Non-Cryst. Solids 63, 1 (1984); (b) R.J.P. Corriu, Eur. J. Inorg. Chem. 5, 1109 (2001); (c) C.J. Brinker, J. Non-Cryst. Solids 100, 31 (1988).

  2. (a) G.D. Sorarù, G. D'Andrea, R. Campostrini and F. Babonneau, J. Mater. Chem. 5, 1363 (1995); (b) A. Jitianu, A. Britchi, C. Deleanu, V. Badescu and M. Zaharescu, J. Non-Cryst. Solids 319, 263 (2003); (c) F. Burnet, J. Non-Cryst. Solids 231, 58 (1998).

  3. R. Campostrini, G. Carturan, B. Pelli, and P. Traldi, J. Non-Crist. Solids 108, 143 (1989); ibidem, 315.

    CAS  Google Scholar 

  4. S. Cristoni, L. Armelao, E. Tondello and P. Traldi, J. Mass. Spectrom. 34, 1380 (1999).

    Article  Google Scholar 

  5. S. Cristoni, L. Armelao, S. Gross, E. Tondello, and P. Traldi, Rapid Commun. Mass Spectrom. 14, 662 (2000).

    Article  CAS  Google Scholar 

  6. (a) J.D. Mackenzie and E.P. Bescher, J. Sol-Gel Sci. Technol. 19, 23 (2000) and 27, 7 (2003); (b) H. Kozuka, M. Kajimura, T. Hirano and K. Katayama, J. Sol-Gel Sci. Technol. 19, 205 (2000); (c) E. Sanchez-Gonzalez, P. Miranda, A. Diaz-Parralejo, A. Pajares and F. Guiberteau, J. Mat. Res. 19, 896 (2004); d) V.M. Sglavo, G. Carturan, R. Dal Monte and M. Muraca, J. Mat. Sci. 34, 3587 (1999).

  7. (a) R.M. Almeida and C.G. Pantano, J. Appl. Phys. 68,4225 (1990); (b) A. Jitianu, M. Gartner, M. Zaharescu, D. Cristea and E. Manes, Mat. Sci. Eng. C C23, 301 (2003); (c) T.P. Chou and G. Cao, J. Sol-Gel Sci. Technol. 27, 31 (2003); (d) B. Mahltig and H. Bottcher, J. Sol-Gel Sci. Tech. 27, 43 (2003).

  8. (a) Y.W. Zhang, Y. Yang, S. Jin, C.S. Liao, and C.H. Yan, J. Mater. Chem. 11, 2067 (2001); (b) W. Liu, Y. Chen, C. Ye and P. Zhang, Ceram. Int. 28, 349 (2002).

  9. G. Carturan, G. Dellagiacoma, M. Rossi, R. DalMonte, and M. Muraca, SPIE Sol-Gel Optics IV 3136, 366 (1997).

    CAS  Google Scholar 

  10. G. Carturan, R. Dal Toso, S. Boninsegna and R. Dal Monte, J. Mater. Chem. 14, 2087 (2004).

    Article  CAS  Google Scholar 

  11. (a) R. Campostrini, G. Carturan, R. Caniato, A. Piovan, R. Filippini, G. Innocenti, and E.M. Cappelletti, J. Sol-Gel Sci. Tech. 7, 87 (1996); (b) G. Carturan, R. Dal Monte, G. Pressi, S. Secondin, and P. Verza, J. Sol-Gel Sci. Tech. 13, 273 (1998).

  12. S. Boninsegna, R. Dal Toso, R. Dal Monte, and G. Carturan, J. Sol-Gel Sci. Tech. 26, 1151 (2003).

    Article  CAS  Google Scholar 

  13. G. Carturan, R. Dal Toso, and R. Dal Monte, Bioreactor Int. Pat. Appl., No. CT/EP02/00619, filed January 2002.

  14. M. Mancini, M. Moresi, and F. Sappino, J. Food Engineering 28, 283 (1996).

    Google Scholar 

  15. B. Launey, J.L. Doublier and G. Cuvelier, in Functional Properties of Food Macromolecules, edited by J.R. Mitchell and D.A. Ledward (Elsevier, London, 1986), p. 1.

    Google Scholar 

  16. (a) T. Coradin and J. Livage, J. Sol-Gel Sci. Tech. 26, 1165 (2003); (b) T. Coradin, E. Mercey, L. Lisnard, and J. Livage, Chem. Commun. 23, 2496 (2001); (c) S. Zhang, and X. Zhao, J. Mater. Chem. 14, 2082 (2004); d) A. Bouchara, G. Mosser, G.J., de A.A. Soler-Illia, J. Chane-Ching, and C. Sanchez, J. Mater. Chem. 14, 2347 (2004).

  17. (a) S. Sakai, T. Ono, H. Ijima, and K. Kawakami, Biomaterials 22, 2827 (2001); (b) S. Sakai, T. Ono, H. Ijima, and K. Kawakami, J. Sol-Gel Sci. Technol. 28, 267 (2003).

  18. R. Campostrini, G. D'Andrea, G. Carturan, R. Ceccato, and G.D. Sorarù, J. Mater. Chem. 6, 585 (1996).

    Article  CAS  Google Scholar 

  19. G. Facchin, G. Carturan, R. Campostrini, S. Gialanella, L. Lutterotti, L. Armelao, G. Marcì, L. Palmisano, and A. Sclafani, J. Sol-Gel Sci. Tech. 18, 29 (2000).

    Article  CAS  Google Scholar 

  20. R. Campostrini, M. Ischia, and L. Armelao, J. Therm. Anal. Cal. 78, 657 (2004).

    Article  CAS  Google Scholar 

  21. R. Campostrini, M. Ischia, and L. Palmisano, J. Therm. Anal. Cal. 71, 997 (2003); ibidem, 1011.

    CAS  Google Scholar 

  22. R. Campostrini, M. Ischia, and L. Palmisano, J. Therm. Anal. Cal. 75, 13 (2004); ibidem, 25.

    CAS  Google Scholar 

  23. C. Ouwerx, N. Velings, M.M. Mestdagh, and M.A.V. Axelos, Polymer Gels and Networks 6, 393 (1998).

    Article  CAS  Google Scholar 

  24. R.H. Perry and D.W. Green, Chemical Engineers' Handbook 7th ed. (Mc Graw Hill Professional, 1997), Chap. 14, p. 66.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzo Campostrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carturan, G., Campostrini, R., Tognana, L. et al. Gas-Phase Silicon Alkoxide Reactivity vs. Na-Alginate Droplets for Conjugation of Alginate and Sol-Gel Technologies. J Sol-Gel Sci Technol 37, 69–77 (2006). https://doi.org/10.1007/s10971-005-4205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-005-4205-9

Keywords

Navigation