Skip to main content
Log in

Investigation of radiation effects on structural, morphological, and compositional properties of WO3 nanostructures for water splitting applications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Gamma radiation can cause structural defects in metal oxide thin films, affecting their conversion efficiency. This study focuses on synthesizing and characterizing Tungsten oxide (WO3) films for photo-electrochemical (PEC) water-splitting applications. The pristine WO3 film was irradiated with a Co-60 gamma source to improve its photocatalytic activity and was named G-WO3. The resulting G-WO3 thin films showed a decrease in the optical direct band gap and showed higher photocurrent density and lower charge transfer resistance for PEC applications. The carrier charge density (Nd) values were found to be increased after γ-radiation. The synthesized G-WO3 thin films possess good stability and reusability for photo-electrochemical water-splitting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and super-capacitors? Chem Rev 104:4245. https://doi.org/10.1021/cr020730k

    Article  CAS  PubMed  Google Scholar 

  2. Chen Z, Dinh HN, Miller E (2013) Photoelectrochemical water splitting. Springer, New York. https://doi.org/10.1007/978-1-4614-8298-7

    Book  Google Scholar 

  3. Ting Z (2023) Springer briefs in energy. Photoelectrochemical water splitting standards, experimental methods, and protocols. Accessed 6 July 2023. https://www.academia.edu/44179757/SPRINGER_BRIEFS_IN_ENERGY_Photoelectrochemical_Water_Splitting_Standards_Experimental_Methods_and_Protocols

  4. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11(7):3026–3033. https://doi.org/10.1021/nl201766h

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P (2013) Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13(1):14–20. https://doi.org/10.1021/nl3029202

    Article  CAS  PubMed  Google Scholar 

  6. Zhonghai Zhang Md, Hossain F, Takahashi T (2010) Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int J Hydrog Energy 35(16):8528–8535. https://doi.org/10.1016/j.ijhydene.2010.03.032

    Article  CAS  Google Scholar 

  7. Sivula K, Le Formal F, Graetzel M (2011) Solar water splitting: progress using hematite (Fe2O3) photoelectrodes. ChemSusChem 4:432–49. https://doi.org/10.1002/cssc.201000416

    Article  CAS  PubMed  Google Scholar 

  8. Cesar I, Kay A, Gonzalez Martinez JA, Grätzel M (2006) Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. J Am Chem Soc 128(14):4582–4583. https://doi.org/10.1021/ja060292p

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Zhen X, Yin M, Fan H, Cheng W, Linfeng L, Song Y, Ma J, Zhu X (2015) Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3. Nanoscale Res Lett 10(1):374. https://doi.org/10.1186/s11671-015-1077-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Donge W, Li R, Zhu J, Shi J, Han J, Zong X (2012) Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst. J Phys Chem C 116(8):5082–89. https://doi.org/10.1021/jp210584b

    Article  CAS  Google Scholar 

  11. Jo WJ, Jang J-W, Kong K-j, Kang HJ, Kim JY, Jun H, Parmar KPS, Lee JS (2012) Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew Chem Int Ed 51(13):3147–51. https://doi.org/10.1002/anie.201108276

    Article  CAS  Google Scholar 

  12. Wang D, Hongfu Jiang X, Zong QX, Ma Y, Li G, Li C (2011) Crystal facet dependence of water oxidation on BiVO4 sheets under visible light irradiation. Chem A Eur J 17(4):1275–82. https://doi.org/10.1002/chem.201001636

    Article  CAS  Google Scholar 

  13. Steinfeld A (2002) Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrog Energy 27:611–619. https://doi.org/10.1016/S0360-3199(01)00177-X

    Article  CAS  Google Scholar 

  14. Wolcott A, Smith WA, Kuykendall TR, Zhao Y, Zhang JZ (2009) Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv Func Mater 19(12):1849–1856. https://doi.org/10.1002/adfm.200801363

    Article  CAS  Google Scholar 

  15. Maeda K, Domen K (2010) Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light. Chem Mater 22(3):612–623. https://doi.org/10.1021/cm901917a

    Article  CAS  Google Scholar 

  16. Tacca A, Meda L, Marra G, Savoini A, Caramori S, Cristino V, Bignozzi CA et al (2012) Photoanodes based on nanostructured WO3 for water splitting. Chemphyschem: Eur J Chem Phys Phys Chem 13(12):3025–34. https://doi.org/10.1002/cphc.201200069

    Article  CAS  Google Scholar 

  17. Hameed A, Gondal M, Yamani Zain (2004) Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catal Commun 5:715–19. https://doi.org/10.1016/j.catcom.2004.09.002

    Article  CAS  Google Scholar 

  18. Enesca A, Duta A, Schoonman J (2007) Study of photoactivity of tungsten trioxide (WO3) for water splitting. Thin Solid Films 515:6371–6374. https://doi.org/10.1016/j.tsf.2006.11.135

    Article  CAS  Google Scholar 

  19. Dias P, Lopes T, Meda L, Andrade L, Mendes A (2016) Photoelectrochemical water splitting using WO3 photoanodes: the substrate and temperature roles. Phys Chem Chem Phys 18(7):5232–5243. https://doi.org/10.1039/C5CP06851G

    Article  CAS  PubMed  Google Scholar 

  20. Kalanur SS, Yoo I-H, Eom K, Seo H (2018) Enhancement of photoelectrochemical water splitting response of WO3 using Bi doping. J Catal 357:127–137. https://doi.org/10.1016/j.jcat.2017.11.012

    Article  CAS  Google Scholar 

  21. Zheng H, Jian Zhen O, Strano MS, Kaner RB, Mitchell A, Kalantar-Zadeh K (2011) Nanostructured tungsten oxide – properties, synthesis, and applications. Adv Funct Mater 21(12):2175–96. https://doi.org/10.1002/adfm.201002477

    Article  CAS  Google Scholar 

  22. Long H, Zeng W, Zhang He (2015) Synthesis of WO3 and Its gas sensing: a review. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-015-2896-4

    Article  Google Scholar 

  23. Zhuiykov S (2014) Nanostructured semiconductor oxides for the next generation of electronics and functional devices. Woodhead Publishing, Oxford

    Google Scholar 

  24. Wang Z, Ming Hu, Wang Y, Xiangcheng L, Qin Y (2016) Effect of solvothermal reaction temperature on the morphology of WO3 nanocrystals and their low-temperature NO2-sensing properties. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2016.01.056

    Article  Google Scholar 

  25. Anithaa AC, Lavanya N, Asokan K, Sekar C (2015) WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochim Acta 167:294–302. https://doi.org/10.1016/j.electacta.2015.03.160

    Article  CAS  Google Scholar 

  26. Hariharan V, Radhakrishnan S, Parthibavarman M, Dhilipkumar R, Sekar C (2011) Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications. Talanta 85(4):2166–2174. https://doi.org/10.1016/j.talanta.2011.07.063

    Article  CAS  PubMed  Google Scholar 

  27. Marzouk MA, ElBatal FH, Eisa WH, Ghoneim NA (2014) Comparative spectral and shielding studies of binary borate glasses with the heavy metal oxides SrO, CdO, BaO, PbO or Bi2O3 before and after gamma irradiation. J Non-Cryst Solids 387:155–160. https://doi.org/10.1016/j.jnoncrysol.2014.01.002

    Article  CAS  Google Scholar 

  28. Kwong WL, Qiu H, Nakaruk A, Koshy P, Sorrell CC (2013) Photoelectrochemical properties of WO3 thin films prepared by electrodeposition. Energy Proc 34:617–626. https://doi.org/10.1016/j.egypro.2013.06.793

    Article  CAS  Google Scholar 

  29. Rodríguez-Pérez M, Chacón C, Palacios-González E, Rodríguez-Gattorno G, Oskam G (2014) Photoelectrochemical water oxidation at electrophoretically deposited WO3 films as a function of crystal structure and morphology. Electrochim Acta, Electrochem New Era 140:320–331. https://doi.org/10.1016/j.electacta.2014.03.022

    Article  CAS  Google Scholar 

  30. Zhu T, Chong MN, Phuan YW, Chan E-S (2015) Electrochemically synthesized tungsten trioxide nanostructures for photoelectrochemical water splitting: influence of heat treatment on physicochemical properties, photocurrent densities and electron shuttling. Colloids Surf, A 484:297–303. https://doi.org/10.1016/j.colsurfa.2015.08.016

    Article  CAS  Google Scholar 

  31. Fujimoto I, Wang N, Saito R, Miseki Y, Gunji T, Sayama K (2014) WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting. Int J Hydrog Energy 39(6):2454–2461. https://doi.org/10.1016/j.ijhydene.2013.08.114

    Article  CAS  Google Scholar 

  32. Chatchai P, Kishioka S-y, Murakami Y, Nosaka AY, Nosaka Y (2010) Enhanced photoelectrocatalytic activity of FTO/WO3/BiVO4 electrode modified with gold nanoparticles for water oxidation under visible light irradiation. Electrochim Acta 55(3):592–596. https://doi.org/10.1016/j.electacta.2009.09.032

    Article  CAS  Google Scholar 

  33. Alrehaily LM, Joseph JM, Biesinger MC, Guzonas DA, Wren JC (2012) Gamma-radiolysis-assisted cobalt oxide nanoparticle formation. Phys Chem Chem Phys 15(3):1014–1024. https://doi.org/10.1039/C2CP43094K

    Article  Google Scholar 

  34. Abdelghany AM, Hammad AH (2015) The effect of WO3 dopant on the structural and optical properties of ZnO–P2O5 glass and the effect of gamma irradiation. J Mol Struct 1081:342–347. https://doi.org/10.1016/j.molstruc.2014.10.055

    Article  CAS  Google Scholar 

  35. Reiff SC, LaVerne JA (2015) Gamma and He ion radiolysis of copper oxides. J Phys Chem C 119(16):8821–8828. https://doi.org/10.1021/acs.jpcc.5b02079

    Article  CAS  Google Scholar 

  36. Anithaa AC, Asokan K, Sekar C (2017) Highly sensitive and selective serotonin sensor based on gamma ray irradiated tungsten trioxide nanoparticles. Sens Actuators, B Chem 238:667–675. https://doi.org/10.1016/j.snb.2016.07.098

    Article  CAS  Google Scholar 

  37. Arshak K, Korostynska O (2006) Response of metal oxide thin film structures to radiation. Mater Sci Eng, B 133(1):1–7. https://doi.org/10.1016/j.mseb.2006.06.012

    Article  CAS  Google Scholar 

  38. Lavanya N, Anithaa AC, Sekar C, Asokan K, Bonavita A, Donato N, Leonardi SG, Neri G (2017) Effect of gamma irradiation on structural, electrical and gas sensing properties of tungsten oxide nanoparticles. J Alloy Compd 693:366–372. https://doi.org/10.1016/j.jallcom.2016.09.137

    Article  CAS  Google Scholar 

  39. Kolhe P, Mutadak P, Maiti N, Sonawane K (2020) Synthesis of WO3 nanoflakes by hydrothermal route and its gas sensing application. Sens Actuators, A 304:111877. https://doi.org/10.1016/j.sna.2020.111877

    Article  CAS  Google Scholar 

  40. Shinde P, Sharma V, Punde A, Waghmare A, Vairale P, Hase Y, Pandharkar S, Bhorde A, Aher R, Nair S, Doiphode V, Jadkar V, Patil N, Rondiya S, Prasad M, Jadkar S (2021) 2D alignment of zinc oxide@ZIF8 nanocrystals for photoelectrochemical water splitting. New J Chem 45(7):3498–3507. https://doi.org/10.1039/D0NJ05567K

    Article  CAS  Google Scholar 

  41. Dongale TD, Mohite SV, Bagade AA, Kamat RK, Rajpure KY (2017) Bio-mimicking the synaptic weights, analog memory, and forgetting effect using spray deposited WO3 memristor device. Microelectron Eng 183–184:12–18. https://doi.org/10.1016/j.mee.2017.10.003

    Article  CAS  Google Scholar 

  42. Kolhe PS, Shirke PS, Maiti N, More MA, Sonawane KM (2019) Facile Hydrothermal synthesis of WO3 nanoconifer thin film: multifunctional behavior for gas sensing and field emission applications. J Inorg Organomet Polym Mater 29(1):41–48. https://doi.org/10.1007/s10904-018-0962-0

    Article  CAS  Google Scholar 

  43. Ruan Q, Bayazit MK, Kiran V, Xie J, Wang Y, Tang J (2019) Key factors affecting photoelectrochemical performance of g-c3n4 polymer Films. Chem Commun 55(50):7191–7194. https://doi.org/10.1039/C9CC03084K

    Article  CAS  Google Scholar 

  44. Mohamedkhair AK, Drmosh QA, Qamar M, Yamani ZH (2021) Tuning structural properties of WO3 thin films for photoelectrocatalytic water oxidation. Catalysts 11(3):381. https://doi.org/10.3390/catal11030381

    Article  CAS  Google Scholar 

  45. Deepika DG, Chauhan V, Mahajan A, Rashi Gupta S, Ali A, Kumar R (2023) Influence of gamma radiation on optical, structural and surface morphological properties of WO3 thin films grown by RF sputtering. Radiat Phys Chem 202:110554. https://doi.org/10.1016/j.radphyschem.2022.110554

    Article  CAS  Google Scholar 

  46. Mouratis K, Tudose IV, Romanitan C, Pachiu C, Popescu M, Simistiras G, Couris S, Suchea MP, Koudoumas E (2022) WO3 films grown by spray pyrolysis for smart windows applications. Coatings 12(4):545. https://doi.org/10.3390/coatings12040545

    Article  CAS  Google Scholar 

  47. Ross-Medgaarden EI, Wachs IE (2007) Structural determination of bulk and surface tungsten oxides with UV–vis diffuse reflectance spectroscopy and raman spectroscopy. J Phys Chem C 111(41):15089–15099. https://doi.org/10.1021/jp074219c

    Article  CAS  Google Scholar 

  48. Johansson MB, Niklasson GA, Österlund L (2012) Structural and optical properties of visible active photocatalytic WO3 thin films prepared by reactive DC magnetron sputtering. J Mater Res 27(24):3130–3140. https://doi.org/10.1557/jmr.2012.384

    Article  CAS  Google Scholar 

  49. Mu W, Qianghong Y, Rui H, Li X, Wei H, Jian Y (2017) Porous three-dimensional reduced graphene oxide merged with WO3 for efficient removal of radioactive strontium. Appl Surf Sci 423:1203–11. https://doi.org/10.1016/j.apsusc.2017.06.206

    Article  CAS  Google Scholar 

  50. Dongale TD, Mohite SV, Bagade AA, Gaikwad PK, Patil PS, Kamat RK, Rajpure KY (2015) Development of Ag/WO3/ITO thin film memristor using spray pyrolysis method. Electron Mater Lett 11(6):944–948. https://doi.org/10.1007/s13391-015-4180-4

    Article  CAS  Google Scholar 

  51. Ben Naceur J, Gaidi M, Bousbih F, Mechiakh R, Chtourou R (2012) Annealing effects on microstructural and optical properties of nanostructured-TiO2 thin films prepared by sol-gel technique. Curr Appl Phys 12(2):422–428. https://doi.org/10.1016/j.cap.2011.07.041

    Article  Google Scholar 

  52. Ben Rabeh M, Khedmi N, Fodha MA, Kanzari M (2014) The effect of thickness on optical band gap and N-type conductivity of CuInS2 thin films annealed in air atmosphere. Energy Proc 44:52–60. https://doi.org/10.1016/j.egypro.2013.12.009

    Article  CAS  Google Scholar 

  53. Chua CS, Ansovini D, Lee CJJ, Teng YT, Ong LT, Dongzhi Chi TS, Hor A, Raja R, Lim Y-F (2016) The Effect of crystallinity on photocatalytic performance of Co3O4 water-splitting cocatalysts. Phys Chem Chem Phys 18(7):5172–5178. https://doi.org/10.1039/C5CP07589K

    Article  CAS  PubMed  Google Scholar 

  54. Sharma P, Doiphode P, Bhorade O, Yengantiwar A (2020) Bismuth vanadate thin films for efficient photoelectrochemical water splitting. Emerg Mater 3(2):187–194. https://doi.org/10.1007/s42247-020-00093-2

    Article  Google Scholar 

  55. Hammad AS, El-Bery HM, El-Shazly AH, Elkady MF (2018) Effect of WO3 morphological structure on its photoelectrochemical properties. Int J Electrochem Sci 13(1):362–72. https://doi.org/10.20964/2018.01.32

    Article  CAS  Google Scholar 

  56. Bera B, Chakraborty A, Kar T, Leuaa P, Neergat M (2017) Density of states, carrier concentration, and flat band potential derived from electrochemical impedance measurements of N-doped carbon and their influence on electrocatalysis of oxygen reduction reaction. J Phys Chem C 121(38):20850–20856. https://doi.org/10.1021/acs.jpcc.7b06735

    Article  CAS  Google Scholar 

  57. Zhang L, Mohamed HH, Dillert R, Bahnemann D (2012) Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review. J Photochem Photobiol, C 13(4):263–276. https://doi.org/10.1016/j.jphotochemrev.2012.07.002

    Article  CAS  Google Scholar 

  58. Saeki A, Seki S, Koizumi Y, Sunagawa T, Ushida K, Tagawa S (2005) Increase in the mobility of photogenerated positive charge carriers in polythiophene. J Phys Chem B 109(20):10015–10019. https://doi.org/10.1021/jp0442145

    Article  CAS  PubMed  Google Scholar 

  59. Costa M, Costa G, Lima A, Luz G, Longo E, Cavalcante L, Santos R (2018) Investigation of charge recombination lifetime in γ-WO3 films modified with AgO and PtO nanoparticles and its influence on photocurrent density. Ionics. https://doi.org/10.1007/s11581-018-2640-1

    Article  Google Scholar 

  60. Hou C, Jiangwei Yu, Ding J, Fan W, Bai H, Dongbo Xu, Shi W (2021) An Effective route for growth of WO3/BiVO4 heterojunction thin films with enhanced photoelectrochemical performance. J Ind Eng Chem 104:146–154. https://doi.org/10.1016/j.jiec.2021.08.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author (SSP) gratefully acknowledges the JRF award and financial support provided by the Department of Atomic Energy-Board of Research in Nuclear Sciences (DAE-BRNS), Government of India, under the research project (Sanction No. 59/14/09/2022- BRNS/34060). One of the authors (PMK) is thankful for the SRF provided under the Chhatrapati Shahu Maharaj National Research Fellowship (CSMNRF) 2020 from SARTHI, M.S. India. The author (ARK) is appreciative of the research fellowship (MJPRF2021) given by MAHAJYOTI, Nagpur, India. PSS appreciates the financial support from the Ministry of New and Renewable Energy (MNRE), Government of India under the National Renewable Energy Fellowship (NREF) program. The author (PSK) would like to acknowledge DAE-BRNS-(58/14/19/2019-BRNS/10604) for financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equal contribution.

Corresponding author

Correspondence to Nandkumar T. Mandlik.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pande, S.S., Kakade, P.M., Kachere, A.R. et al. Investigation of radiation effects on structural, morphological, and compositional properties of WO3 nanostructures for water splitting applications. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09520-8

Keywords

Navigation