Skip to main content

Advertisement

Log in

Role of Microwave on Structural, Morphological, Optical and Visible Light Photocatalytic Performance of WO3 Nanostructures

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A novel, energy efficient and facile one step microwave irradiation method has been adopted to prepare the WO3 nanostructures without using any post annealing process. The WO3 nanoparticles were synthesized from tungstic acid and sodium hydroxide mixed aqueous solutions exposed for 5 min to microwave radiation at four different powers, namely 180, 360, 720 and 900 W. The as-synthesized product was characterized using structural, morphological and optical studies by powder X-ray diffraction (PXRD), scanning electron microscope, transmission electron microscope (TEM), Raman spectroscopy, photoluminescence spectroscopy (PL) and UV–visible diffuse reflectance (DRS) analysis. Nanocrystalline monoclinic structures of WO3 with different nanoscale were obtained through XRD and TEM analysis. The average grain size of the WO3 was increased from 20 to 38 nm with the increase of microwave power. A considerable red shift and decreasing the band gap energy was observed with the increase of microwave power. The photocatalytic efficiencies of the WO3 catalyst powders were investigated by using two different dyes such as Methylene blue and Congo red under visible light irradiation. The 900 W irradiated sample showed excellent catalytic efficiency and stability than other samples. The possible growth and photocatalytic mechanisms for these WO3 nanostructures were tentatively proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga (2001). Science 293, 269.

    Article  CAS  PubMed  Google Scholar 

  2. A. Fujishima, X. Zhang, and D. A. Tryk (2008). Surf. Sci. Rep. 63, 515.

    Article  CAS  Google Scholar 

  3. X. Chen, L. Liu, P. Y. Yu, and S. S. Mao (2011). Science 331, 746.

    Article  CAS  PubMed  Google Scholar 

  4. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye (2012). Adv. Mater. 24, 229.

    Article  CAS  PubMed  Google Scholar 

  5. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, and K. Domen (2006). Nature 440, 295.

    Article  CAS  PubMed  Google Scholar 

  6. Z. Zou, J. Ye, K. Sayama, and H. Arakawa (2001). Nature 414, 625.

    Article  CAS  PubMed  Google Scholar 

  7. S. Ithurria, M. D. Tessier, B. Mahler, R. P. S. M. Lobo, B. Dubertret, and A. L. Efros (2011). Nat. Mater. 10, 936.

    Article  CAS  PubMed  Google Scholar 

  8. M. A. El-Sayed (2004). Acc. Chem. Res. 37, 326.

    Article  CAS  PubMed  Google Scholar 

  9. Y. S. Li, Z. L. Tang, J. Y. Zhang, and Z. T. Zhang (2017). J. Alloys Compd. 708, 358.

    Article  CAS  Google Scholar 

  10. S. Girish Kumar and K. S. R. Koteswara Rao (2017). Appl. Surf. Sci. 391, 124.

    Article  CAS  Google Scholar 

  11. Z. Wang, D. Chu, L. Wang, L. Wang, H. Wenhui, X. Chen, H. Yang, and J. Sun (2017). Appl. Surf. Sci. 396, 492.

    Article  CAS  Google Scholar 

  12. J. Wang, Z. Chen, G. Zhai, and Y. Men (2018). Appl. Surf. Sci. 462, 760.

    Article  CAS  Google Scholar 

  13. G. Ma, L. Junlin, Q. Meng, H. Lv, L. Shui, Y. Zhang, M. Jin, Z. Chen, M. Yuan, R. Nötzel, X. Wang, C. Wang, J.-M. Liu, and G. Zhou (2018). Appl. Surf. Sci. 451, 306.

    Article  CAS  Google Scholar 

  14. J. Jin, Yu Jiaguo, D. Guo, C. Cui, and W. Ho (2015). Appl. Surf. Sci. 11, 5262.

    CAS  Google Scholar 

  15. S. Supothina, P. Seeharaj, S. Yoriya, and M. Sriyudthsak (2007). Ceram. Int. 33, 931.

    Article  CAS  Google Scholar 

  16. C. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski (2001). J. Am. Chem. Soc. 123, 10639.

    Article  CAS  PubMed  Google Scholar 

  17. X. Song, Y. Zhao, and Y. Zheng (2006). Mater. Lett. 60, 3405.

    Article  CAS  Google Scholar 

  18. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, and K. Thavamani (2014). J. Mater. Sci. Mater. Electron. 25, 730.

    Article  CAS  Google Scholar 

  19. M. Karthik, M. Parthibavarman, A. Kumaresan, S. Prabhakaran, V. Hariharan, R. Poonguzhali, and S. Sathishkumar (2017). J. Mater. Sci. Mater. Electron. 28, 6635.

    Article  CAS  Google Scholar 

  20. D. Madhan, M. Parthibavarman, P. Rajkumar, and M. Sangeetha (2015). J. Mater. Sci. Mater. Electron. 26, 6823.

    Article  CAS  Google Scholar 

  21. J. Y. Luo, X. X. Chen, W. Da Li, W. Y. Deng, W. Li, H. Y. Wu, L. F. Zhu, and Q. G. Zeng (2013). Appl. Phys. Lett. 102, 113104.

    Article  CAS  Google Scholar 

  22. D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu (2007). J. Raman Spectrosc. 38, 176.

    Article  CAS  Google Scholar 

  23. H.-J. Yuan, Y.-Q. Chen, F. Yu, D. Tang, X.-W. He, D. Zhao, and D. Tang (2011). Chin. Phys. B 20, 036103.

    Article  CAS  Google Scholar 

  24. W. Smith, Z. Y. Zhang, and Y. P. Zhao (2007). J. Vac. Sci. Technol. B 25, 1875.

    Article  CAS  Google Scholar 

  25. H. I. S. Nogueira, A. M. V. Cavaleiro, J. Rocha, T. Trindade, and J. D. P. Jesus (2004). Mater. Res. Bull. 39, 683.

    Article  CAS  Google Scholar 

  26. S. Kim and W. Choi (2002). J. Phys. Chem. B 106, 13311.

    Article  CAS  Google Scholar 

  27. M. Qamar, M. A. Gondal, and Z. H. Yamani (2010). Catal. Commun. 11, 768.

    Article  CAS  Google Scholar 

  28. N. A. Ramos-Delgadoa, M. A. Gracia-Pinillab, L. Maya-Treviño, L. Hinojosa-Reyesa, J. L. Guzman-Mara, and A. Hernández-Ramírez (2013). J. Hazard. Mater. 263, 36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Parthibavarman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parthibavarman, M., Karthik, M. & Prabhakaran, S. Role of Microwave on Structural, Morphological, Optical and Visible Light Photocatalytic Performance of WO3 Nanostructures. J Clust Sci 30, 495–506 (2019). https://doi.org/10.1007/s10876-019-01512-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01512-z

Keywords

Navigation