Skip to main content
Log in

Identification of pre-seismic radon anomaly using artificial neural network near Indo-Burman subduction line

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The study presents analysis of 1 year 15 min cycle radon data using artificial neural network (ANN) in an attempt to estimate earthquake prediction time near Indo-Burman subduction line. The region was found to be seismically active and radon anomalies respond well to it, when majority of the radon anomalies peaks and selected earthquakes correlated. The observation also shows that application of non-linear technique ANN to a non-linear data like radon seems a promising approach in predicting geophysical phenomena at one of the most seismically active region of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thuamthansanga T, Sahoo BK, Tiwari RC, Sapra BK (2019) A study on the anomalous behaviour of Radon in different depths of soil at a tectonic fault and its comparison with time-series data at a distant continuous monitoring station. SN Appl Sci 1(7):683

    Article  Google Scholar 

  2. Sahoo BK, Gaware JJ (2016) Radon in ground water and soil as a potential tracer for uranium exploration and earthquake precursory studies. SRESA’s Int J Life Cycle Reliab Saf Eng 5:21–29

    Google Scholar 

  3. Nalukudiparambil J, Gopinath G, Ramakrishnan RT, Surendran AK (2021) Groundwater radon (222 Rn) assessment of a coastal city in the high background radiation area (HBRA), India. Arab J Geosci 14:1–7

    Article  Google Scholar 

  4. Wang Y, Brönner M, Baranwal VC, Paasche H, Stampolidis A (2021) Data-driven classification of bedrocks by the measured uranium content using self-organizing maps. Appl Geochem 132:105074

    Article  CAS  Google Scholar 

  5. Zhou H, Wan Y, Su H, Li C (2023) Spatial–temporal evolution of soil gas Rn before two Ms ≥ 5.0 earthquakes in the mid-eastern of the Qilian fault zone (QLF). Sci Reports 13(1):21491

  6. Yu C, Jia B, Shi L, Han M, Wang N (2023) Distribution of radionuclides in the surface covering of the barun uranium mining area in Erlian Basin. Inner Mongolia Minerals 13(7):973

    CAS  Google Scholar 

  7. Auvinen A, Mäkeläinen I, Hakama M, Castrén O, Pukkala E, Reisbacka H, Rytömaa T (1996) Indoor radon exposure and risk of lung cancer: a nested case-control study in Finland. J Natl Cancer Inst 88:966–972

    Article  CAS  PubMed  Google Scholar 

  8. Baysson H, Tirmarche M, Tymen G, Gouva S, Caillaud D, Artus JC, Vergnenegre A, Ducloy F, Laurier D (2004) Indoor radon and lung cancer in France. Epidemiology 15:709–716

    Article  PubMed  Google Scholar 

  9. Fuhrmann M, Benson CH, Likos WJ, Stefani N, Michaud A, Waugh WJ, Williams MM (2021) Radon fluxes at four uranium mill tailings disposal sites after about 20 years of service. J Environ Radioact 237:106719

    Article  CAS  PubMed  Google Scholar 

  10. Lin CC, Lin SJ, Li PY, Ting CY, Lee MS (2024) Radon levels and dose assessment at the basement workplaces of hospitals in different regions of Taiwan. Radiation Phys Chem, 111530

  11. Shapiro MH, Melvin JD, Tombrello TA, Mendenhall MH, Larson PB, Whitcomb JH (1981) Relationship of the 1979 Southern California radon anomaly to a possible regional strain event. J Geophys Res Solid Earth 86:1725–1730

    Article  Google Scholar 

  12. King CY (1986) Gas geochemistry applied to earthquake prediction: an overview. J Geophys Res Solid Earth 91:12269–12281

    Article  Google Scholar 

  13. Segovia N, Seidel J, Monnin M (1987) Variations of radon in soils induced by external factors. J Radioanal Nucl Chem 119(3):199–209

    Article  CAS  Google Scholar 

  14. Singh MW, Ramola RC, Singh S, Virk HS (1988) The influence of meteorological parameters on soil gas Radon. J Assoc Expl Geophys IX(2):85–90

  15. Ramola RC, Singh M, Sandhu AS, Singh S, Virk HS (1990) The use of radon as an earthquake precursor. Int J Radiat Appl Instrum E 4(2):275–287

    Google Scholar 

  16. Yasuoka Y, Shinogi M (1997) Anomaly in atmospheric radon concentration: a possible precursor of the 1995 Kobe, Japan, earthquake. Health Phys 72:759–761

    Article  CAS  PubMed  Google Scholar 

  17. Zmazek B, Živčić M, Vaupotič J, Bidovec M, Poljak M, Kobal I (2002) Soil radon monitoring in the Krško Basin, Slovenia. Appl Radiat Isot 56:649–657

    Article  CAS  PubMed  Google Scholar 

  18. Walia V, Kumar A, Chowdhury S, Lin SJ, Lee HF, Fu CC (2023) Earthquake precursory study using decomposition technique: time series soil radon monitoring data from the San-Jie Station in Northern Taiwan. J Radioanal Nuclear Chem, pp 1–8

  19. Huang P, Lv W, Huang R, Luo Q, Yang Y (2024) Earthquake precursors: a review of key factors influencing radon concentration. J Environ Radioact 271:107310

    Article  CAS  PubMed  Google Scholar 

  20. Ulomov VI, Mavashev BZ (1967) A precursor of a strong tectonic earthquake. In Doklady Akademii Nauk: Russ Acad Sci 176(2):319–321

    Google Scholar 

  21. Dubinchuk VT (1993) Radon as a precursor of earthquakes. geochemical precursors of earthquakes and volcanic eruptions TECDOC-726, International Atomic Energy Agency, Vienna 9–22

  22. Kamislioglu M (2021) The use of chaotic approaches for the nonlinear analysis of soil radon gas (222 Rn) known as an earthquake precursor: finite ımpulse response (FIR) application. Arab J Geosci 14:1–6

    Article  Google Scholar 

  23. Dhar S, Randhawa SS, Kumar A, Walia V, Fu WW, Bharti H, Kumar A (2021) Decomposition of continuous soil–gas radon time series data observed at Dharamshala region of NW Himalayas, India for seismic studies. J Radioanal Nucl Chem 327:1019–1035

    Article  CAS  Google Scholar 

  24. Mir AA, Celebi FV, Rafique M, Faruque MR, Khandaker MU, Kearfott KJ, Ahmad P (2021) Anomaly classification for earthquake prediction in radon time series data using stacking and automatic anomaly indication function. Pure Appl Geophys 7:1–5

    Google Scholar 

  25. Chowdhury S, Deb A, Barman C, Nurujjaman M, Bora DK (2022) Simultaneous monitoring of soil 222Rn in the Eastern Himalayas and the geothermal region of eastern India: an earthquake precursor. Nat Hazards 112(2):1477–1502

    Article  Google Scholar 

  26. Mao Y, Zhang L, Wang H, Guo Q (2023) The temporal variation of radon concentration at different depths of soil: a case study in Beijing. J Environ Radioact 264:107200

    Article  CAS  PubMed  Google Scholar 

  27. Igarashi G, Wakita H (1990) Groundwater radon anomalies associated with earthquakes. Tectonophysics 180(2–4):237–254

    Article  Google Scholar 

  28. Zhang S, Shi Z, Wang G, Yan R, Zhang Z (2022) Application of the extreme gradient boosting method to quantitatively analyze the mechanism of radon anomalous change in Banglazhang hot spring before the Lijiang Mw 7.0 earthquake. J Hydrol 612:128249

  29. Kuo MCT (2023) Anomalous radon decline at antung hot spring before the 2003 Mw 6.8 Chengkung earthquake. In: Groundwater radon in the Taiwan Subduction Zone: a natural strain-meter for earthquake prediction (pp. 21–27). Springer Nature, Singapore

  30. Yasuoka Y, Igarashi G, Ishikawa T, Tokonami S, Shinogi M (2006) Evidence of precursor phenomena in the Kobe earthquake obtained from atmospheric radon concentration. Appl Geochem 21(6):1064–1072

    Article  CAS  Google Scholar 

  31. Omori Y, Yasuoka Y, Nagahama H, Kawada Y, Ishikawa T, Tokonami S, Shinogi M (2007) Anomalous radon emanation linked to preseismic electromagnetic phenomena. Nat Hazards Earth Syst Sci 7:629–635

    Article  Google Scholar 

  32. Omori Y, Nagahama H, Kawada Y, Yasuoka Y, Ishikawa T, Tokonami S, Shinogi M (2009) Preseismic alteration of atmospheric electrical conditions due to anomalous radon emanation. Phys Chem Earth, Parts A/B/C 34(6–7):435–440

    Article  Google Scholar 

  33. Kawada Y, Nagahama H, Omori Y, Yasuoka Y, Ishikawa T, Tokonami S, Shinogi M (2007) Time-scale invariant changes in atmospheric radon concentration and crustal strain prior to a large earthquake. Nonlin Processes Geophys 14:123–130

    Article  Google Scholar 

  34. Yong HO, Kim G (2015) A radon-thoron isotope pair as a reliable earthquake precursor. Sci Rep 5(1):13084

    Article  Google Scholar 

  35. Iwata D, Nagahama H, Muto J, Yasuoka Y (2018) Non-parametric detection of atmospheric radon concentration anomalies related to earthquakes. Sci Rep 8:1–9

    Article  Google Scholar 

  36. Schekotov A, Hayakawa M, Potirakis SM (2021) Does air ionization by radon cause low-frequency atmospheric electromagnetic earthquake precursors? Nat Hazards 106:701–714

    Article  Google Scholar 

  37. Muto J, Yasuoka Y, Miura N, Iwata D, Nagahama H, Hirano M, Mukai T (2021) Preseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake. Sci Rep 11(1):7451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ramola RC, Singh S, Virk HS (1988) A model for the correlation between radon anomalies and magnitude of earthquakes. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks Radiation Meas  15(1–4):689–692

  39. Jaishi HP, Singh S, Tiwari RP, Tiwari RC (2013) Radon and thoron anomalies along Mat fault in Mizoram. India J Earth Syst Sci 122(6):1507–1513

    Article  Google Scholar 

  40. Chowdhury S, Deb A, Nurujjaman M, Barman C (2017) Identification of pre-seismic anomalies of soil radon-222 signal using Hilbert-Huang transform. Nat Hazards 87:1587–1606

    Article  Google Scholar 

  41. Singh S, Jaishi HP, Tiwari RP, Tiwari RC (2017) Time series analysis of soil radon data using multiple linear regression and artificial neural network in seismic precursory studies. Pure Appl Geophys 174(7)-2793–2802

  42. Barman C, Ghose D, Sinha B, Deb A (2016) Detection of earthquake induced radon precursors by Hilbert Huang Transform. J Appl Geophy 133:123–131

    Article  Google Scholar 

  43. Sahoo SK, Katlamudi M, Barman C, Lakshmi GU (2020) Identification of earthquake precursors in soil radon-222 data of Kutch, Gujarat, India using empirical mode decomposition based Hilbert Huang Transform. J Environ Radioact, pp 222–106353

  44. Karastathis VK, Eleftheriou G, Kafatos M, Tsinganos K, Tselentis GA, Mouzakiotis E, Ouzounov D (2022) Observations on the stress related variations of soil radon concentration in the Gulf of Corinth, Greece. Sci Reports 12(1):5442

    CAS  Google Scholar 

  45. Jin X, Bu J, Qiu G, Ma L, Chen Z, Chen T, Cheng X (2022) Non-normal distribution of radon and residual radon and short-term abnormal precursors of residual radon before major earthquakes. Earth Sci Inf 15(4):2495–2511

    Article  Google Scholar 

  46. Keskin S, Külahcı F (2023) ARIMA model simulation for total electron content, earthquake and radon relationship identification. Nat Hazards 115(3):1955–1976

    Article  Google Scholar 

  47. Rasheed A, Rafique M (2023) Filtering analysis of soil radon and thoron time series data. J Radioanal Nucl Chem 332(11):4489–4504

    Article  CAS  Google Scholar 

  48. Jaishi HP, Singh S, Tiwari RP, Tiwari RC (2014) Temporal variation of soil radon and thoron concentrations in Mizoram (India), associated with earthquakes. Nat Hazards 72:443–454

    Article  Google Scholar 

  49. BIS (2002) Indian standard criteria for earthquake resistant design of structure part1-general provisions and buildings. BIS, New Delhi

  50. Gaware JJ, Sahoo BK, Sapra BK, Mayya YS (2011) Indigenous development of online radon and thoron monitors for applications in Uranium mining and Thorium processing facilities. Founder’s Day Special Issue, BARC Newsletter: DAE EA 30:149–153

  51. Thuamthansanga T, Sahoo BK, Tiwari RC, Tiwari RP (2021) Study of meteorological influence on the count of 222Rn and 220Rn gases and its possibility for a forecasting gas. Radiat Environ Med 10(1):37–47

    Google Scholar 

  52. Thuamthansanga T, Sahoo BK, Tiwari RC (2021) Study of pre-seismic thoron anomaly using empirical mode decomposition based Hilbert-Huang transform at Indo-Burman subduction region. J Radioanal Nucl Chem 330(3):1571–1582

    Article  CAS  Google Scholar 

  53. Thuamthansanga T, Sahoo BK, Tiwari RC (2023) Estimation of 238U and 232Th in soil and water of prominent fault region of Mizoram. Environ Eng Res 28(1)

  54. Thuamthansanga T, Tiwari RC (2022) Correlation of in-situ online 222Rn data at Mat fault with geophysical process. Mater Today Proc 65:2825–2831

    Article  CAS  Google Scholar 

  55. Thuamthansanga T, Tiwari RC (2022) Correlation of in-situ online generated 222Rn/220Rn data with the anomaly period of a distance continuous data as an indirect revelation to geophysical process of the region. Int J Eng Res Technol 10(7):35–43

    Google Scholar 

  56. Thuamthansanga T, Tiwari RC, Sahoo BK, Datta D (2020) Analysis of meteorological influence on exhalation of 222Rn and 220Rn gases at mat fault, radon: detection, exposure and control. pp. 17, (Editor: Prof. R.C. Tiwari), Nova Science Publishers, Inc., USA.

  57. Thuamthansanga T, Sahoo BK, Tiwari RC (2022) Analysis of fluctuation in radon concentration and its correlation with geophysical phenomena of a seismically active region, recent developments in using seismic waves as a probe for subsurface investigations, pp. 14, (Editor: Rajib Biswas). CRC Press (Taylor & Francis Group), Boca Raton

  58. Thuamthansanga TT, Sahoo BK, Tiwari RC (2020) Study of the influencing nature of meteorological factors air temperature and relative humidity on the exhalation process of 222Rn/220Rn gases at mat fault. J Appl Fundamental Sci 6(1):41

    Google Scholar 

  59. Thuamthansanga T, Tiwari RC, Tiwari RP, Sahoo BK (2020) Correlation study of 222Rn production rate and exhalation rate with geophysical process at mat fault in Mizoram. J Int Acad Phys Sci 24(1):83–93

    Google Scholar 

  60. Embaby AK, Gomaa S, Darwish Y, Selim S (2024) Predicting gabal gattar uranium content as a function of total gamma-ray and thorium contents using an artificial neural network in Northeastern Desert. Egypt J Mining Environ 15(1):175–189

    Google Scholar 

  61. Aswal S, Kandari T, Sahoo BK, Bourai AA, Ramola RC (2016) Emission of soil gas radon concentration around main central thrust in Ukhimath (Rudraprayag) region of Garhwal Himalaya. Radiat Prot Dosimetry 171:243–247

    Article  CAS  PubMed  Google Scholar 

  62. Catalano R, Immé G, Mangano G, Morelli D, Aranzulla M, Giammanco S, Thinova L (2015) In situ and laboratory measurements for radon transport process study. J Radioanal Nucl Chem 306:673–684

    Article  CAS  Google Scholar 

  63. Barnet I, Pacherová P (2016) Gamma dose rate and soil gas radon concentration measured at low soil thickness (Czech Republic). Environ Earth Sci 75:1–7

    Article  CAS  Google Scholar 

  64. Naskar AK, Akhter J, Gazi M, Mondal M, Deb A (2023) Impact of meteorological parameters on soil radon at Kolkata, India: investigation using machine learning techniques. Environ Sci Pollut Res 30:105374–105386

    Article  CAS  Google Scholar 

  65. Zafrir H, Barbosa SM, Malik U (2013) Differentiation between the effect of temperature and pressure on radon within the subsurface geological media. Radiat Meas 49:39–56

    Article  CAS  Google Scholar 

  66. Singh S, Jaishi HP, Tiwari RP, Tiwari RC (2014) Variations of soil radon concentrations along Chite Fault in Aizawl district, Mizoram, India. Radiat Prot Dosimetry 162:73–77

    Article  CAS  PubMed  Google Scholar 

  67. Singh S, Jaishi HP, Tiwari RP, Tiwari RC (2016) A study of variation in soil gas concentration associated with earthquakes near Indo-Burma Subduction zone. Geoenviron Disas 3:1–8

    CAS  Google Scholar 

  68. Arora BR, Kumar A, Walia V, Yang TF, Fu CC, Liu TK, Wen KL, Chen CH (2017) Assesment of the response of the meteorological/hydrological parameters on the soil gas radon emission at Hsinchu, northern Taiwan: a prerequisite to identify earthquake precursors. J Asian Earth Sci 149:49–63

    Article  Google Scholar 

  69. Walia V, Lin SJ, Hong WL, Fu CC, Yang TF, Wen KL, Chen CH (2009) Continuous temporal soil-gas composition variations for earthquake precursory studies along Hsincheng and Hsinhua faults in Taiwan. Radiat Meas 44:934–939

    Article  CAS  Google Scholar 

  70. Singh M, Ramola RC, Singh B, Singh S, Virk HS (1991) Subsurface soil gas radon changes associated with earthquakes. Int J Radiat Appl Instrum Part D Nucl Tracks Radiat Meas 19:417–420

    Article  CAS  Google Scholar 

  71. Jaishi HP, Singh S, Tiwari RP, Tiwari RC (2014) Correlation of radon anomalies with seismic events along Mat fault in Serchhip District, Mizoram, India. Appl Radiat Isot 86:79–84

    Article  CAS  PubMed  Google Scholar 

  72. King CY, Wakita H (1981) Anomalous radon changes in an artesian well and possible relation to earthquakes. Earthq Notes 521:71

    Google Scholar 

  73. Külahcı F, Şen Z (2014) On the correction of spatial and statistical uncertainties in systematic measurements of 222 Rn for earthquake prediction. Surv Geophys 35:449–478

    Article  Google Scholar 

  74. Petraki E, Nikolopoulos D, Panagiotaras D, Cantzos D, Yannakopoulos P, Nomicos C, Stonham J (2015) Radon-222: a potential short-term earthquake precursor. J Earth Sci Clim Change 6:1

    Google Scholar 

  75. Hayakawa M, Hobara Y (2010) Current status of seismo-electromagnetics for short-term earthquake prediction. Geomat Nat Haz Risk 1:115–155

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by DAEBRNS, BARC, Mumbai, India [Sanction Order No.:36(4)/14/66/2014-BRNS/36024 Dt.26.02.2016.]

Author information

Authors and Affiliations

Authors

Contributions

T.T.T.S (PhD student) carried out the fieldwork, generated data, performed data analysis, wrote and revised the manuscript. R.C.T (Professor) guide the research work and acquired the research grant.

Corresponding author

Correspondence to T. Thuamthansanga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thuamthansanga, T., Tiwari, R.C. Identification of pre-seismic radon anomaly using artificial neural network near Indo-Burman subduction line. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09487-6

Keywords

Navigation